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A B S T R A C T

Spatiotemporal shifts are occurring for estuarine-dependent species in Texas bays. To better understand what 
factors are causing these shifts, a random forest classification analysis was applied to the presence-absence data 
for seven estuarine-dependent species collected over 38 years. Five of the species showed an increase in presence 
and expanded their distributions northward, while the remaining two species declined in numbers and retracted 
their distributions to northern bays. The dominant factor influencing the presence of these species was year, 
followed by distance to major bay inlet and distance to major river mouth. While these factors may not be 
directly related to climate change, environmental fluctuations can impact year class success and alter the pa-
rameters of inlets and river flow. Studies examining multiple environmental and spatial conditions are needed to 
better understand the complexity of the changes in species composition that are occurring.

1. Introduction

Species composition within the major bays along the Texas coast 
have gradually changed over the past 30 years, with climate change 
being linked to the expansion of tropical and sub-tropical species into 
the region (Fujiwara et al., 2019; Pawluk et al., 2022; Torres Ceron et al., 
2023). Conditions have become more favorable to warm-water species 
that are more prevalent in the estuaries during the summer months, with 
a decline in cold-water species that are more prevalent in the spring 
(Fujiwara et al., 2022). This decline was noticeable for species already 
within their southern limits and maximum temperature tolerance, 
resulting in diminished ranges over the years (Fujiwara et al., 2019). 
Additional trait analysis found that not only was there an increase in 
warm-water species, but that these species were also predominately 
long-lived, large, late-maturing predators (Pawluk et al., 2022).

Studies examining the variation of species composition among Texas 
bays determined that temperature was not the prominent, or even sig-
nificant, environmental factor, but instead discerned salinity was the 
most influential (Fujiwara et al., 2019, 2022; Torres Ceron et al., 2023). 
Freshwater input into Texas bays decreases with decreasing latitude, 
creating a unique salinity gradient along the coast from the hyposaline 
Sabine Lake in the north to the hypersaline Laguna Madre in the south. 

While the northward expansion of species may have been limited to 
those that can tolerate a wide range of salinities, climate related changes 
may alter salinity gradients within the bays due to reduced precipita-
tion, leading to a decline in river discharge. Therefore, as salinities in-
crease in the northern bays, species can expand their range into systems 
they previously could not tolerate.

Torres Ceron et al. (2023) identified the top 20 species that are 
significantly contributing to the changes in species composition in at 
least four or more bays along the Texas coast. In this study, the top three 
species (gafftopsail catfish [Bagre marinus], ladyfish [Elops saurus] and 
gray snapper [Lutjanus griseus]), along with four additional commer-
cially and recreationally important species (common snook [Cen-
tropomus undecimalis], Atlantic tarpon [Megalops atlanticus], Gulf 
flounder [Paralichthys albiguttata] and southern flounder [Paralichthys 
lethostigma]), were further analyzed to determine additional factors that 
may contribute to their changes in abundance and, if applicable, 
northern expansion. In addition to the usual environmental parameters, 
distance to major bay inlets and major river mouths was included in this 
study as these factors were not previously examined in other studies and, 
due to their potential to affect the salinity gradient of the bays, may be 
more of an influential factor than salinity alone.
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2. Methods

Gillnet sampling data utilized in this study were collected by the 
Texas Parks and Wildlife Department (TPWD) as part of the Marine 
Resource Monitoring program (Martinez-Andrade, 2018). Collections 
were analyzed from January 1982 through December 2019 across the 
eight major bays along the Texas coast: Sabine Lake, Galveston Bay, 
Matagorda Bay, San Antonio Bay, Aransas Bay, Corpus Christi Bay, 
Upper Laguna Madre, and Lower Laguna Madre (except for Sabine Lake, 
where sampling began in January 1986). Gillnet sampling occurred 
semiannually during spring (April–June) and fall (September–No-
vember), with 45 locations sampled in each bay each season (Fig. 1). 
During each 10-week sampling period, at least 3 gillnet deployments 
were completed each week to ensure collections were obtained over the 
entire period.

Gillnets (182.9 m × 1.2 m) comprised of four sections with varying 
mesh sizes: 76 mm, 102 mm, 127 mm, and 152 mm. The net was set 
perpendicular to the shore, with the smallest mesh size positioned 
closest to the shore and the bottom part of the net secured to the seabed. 
Deployment of the net occurred within an hour before sunset, and 
retrieval took place within 4 h after sunrise on the following day. The 
sampling locations were chosen with a stratified random sampling 
approach to ensure that the entire shoreline of each bay is represented 
during a given season. All fish collected were identified to the most 
specific taxonomic level, usually species level, and counted. Water 
temperature, salinity, and dissolved oxygen levels were measured using 
a YSI© meter, while turbidity was gauged using a HACH© turbidimeter. 
These environmental parameters were measured at the offshore end of 
the net during each sampling event. More detailed information about the 
sampling procedure can be found in Martinez-Andrade (2018).

In addition to the four environmental variables collected by TPWD, 
monthly mean sea level, the North Atlantic Oscillation (NAO) Index (a 
climate index calculated based on high and low pressure patterns in the 
North Atlantic), the distance of the sampling locations to the nearest 
major bay inlet and distance of the sampling locations to the mouth of 
the nearest major river were obtained as variables to further explain 
presence-absence observations of selected fishes. The monthly mean sea 
level was obtained from NOAA Center for Operational Oceanographic 
Products and Services (https://tidesandcurrents.noaa.gov/). The North 
Atlantic Oscillation Index was obtained from NOAA’s Climate Prediction 
Center (https://www.cpc.ncep.noaa.gov/). Distances from sampling 
locations to major bay inlets and river mouths were calculated in ArcGIS 
(version 10.7.1).

The feature variables had smooth yearly patterns as well as varia-
tions among major bays and seasons. These large-scale spatiotemporal 
patterns can cause spurious associations between the response variables 
and feature variables (e.g. Pyper and Peterman, 1998). Therefore, a 
generalized additive model with year as a smooth explanatory variable 
and major bays and seasons as factors was fitted to each feature variable. 
Then, the deviations from the original data and the fitted model (re-
siduals) were calculated, with the residuals being used for the subse-
quent analysis.

To identify the conditions affecting the presence-absence (incidence) 
of selected species with environmental and habitat variables, with bays, 
season, and year as explanatory (feature) variables, a Random Forest 
classification analysis (Hastie et al., 2009) was applied with the inci-
dence data of individual species as the response variable. The Random 
Forest classification reduces overfitting with a cross-validation method. 
It is also robust against co-linear feature variables because it samples a 
subset of feature variables when building a classification tree. Finally, as 

Fig. 1. Locations of major bays along the Texas coast. Major rivers are denoted by blue lines and major bay inlets are marked by yellow stars. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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this method is a non-parametric method, it is not affected by observa-
tions that substantially deviate from other observations (often called 
outliers) as much as parametric methods.

Each data set for each species consists of 27,126 observations (or 
gillnet deployments). The data were randomly divided into two subsets, 
with 70% for building the best-fit model (the training data) and 30% for 
validating the model (the testing data). The training data for gray 
snapper, tarpon, common snook, and Gulf flounder are unbalanced 
(more absences than presences), resulting in a class imbalance problem 
(Megahed et al., 2021). To overcome this issue, the data were randomly 
down-sampled such that presences were at least 25% of the absences. 
Then, the Synthetic Minority Over-sampling Technique (SMOTE; 
Chawla et al., 2002) was used to oversample the observations of pres-
ences. In our analysis, the SMOTE algorithm selected five nearest 
neighbors from the presence data in the feature space. It then created a 
new sample at a random location along the lines connecting the original 
sample and its chosen neighbors. This was repeated until the data were 
balanced. Finally, the balanced data were used for hyper-parameter 
selection and model fitting.

The hyper-parameter (parameters used in Random Forest Classifi-
cation Algorithm) selection was done with the out-of-bag sampling 
prediction error rate (i.e. errors associated with unselected data in a 
bootstrap sampling) from the following sets: (1) number of variables 
randomly sampled as candidates at each split (4,6,8,10) and (2) mini-
mum size of terminal node (4,6,8,10). Other hyper-parameter values 
were kept as the default values in the statistical package used (i.e. the 
common values). The Random Forest classification model with the best 

hyper-parameters based on the out-of-bag sampling prediction error rate 
was selected. The selected classification model was applied to the test 
data set to assess its performance. Performance was measured by accu-
racy, sensitivity, specificity, and the Area under the ROC (Receiver 
Operating Characteristic) Curve (AUC). Finally, the importance of 
feature variables was determined using the mean decrease in accuracy. 
In this approach, the variable that decreased the accuracy more by 
removing it was considered the more important variable. The Random 
Forest classification analysis was repeated for all species separately. The 
analysis was performed using the “randomForest” package (Liaw and 
Wiener, 2002) under R Version 4.3.1 (R Core Team, 2021). The diag-
nostic of the Random Forest classification was performed using the 
“confusionMatrix” function in the “caret” package (Kuhn, 2008) and the 
“auc” function in the Metrics package (Hamner and Frasco, 2018).

3. Results

The variables of importance for the top three species (gafftopsail 
catfish, ladyfish and gray snapper) that significantly contribute to the 
changes in species composition along the Texas coast were year, dis-
tance to bay inlets and distance to river mouths based on mean decrease 
accuracy values (Fig. 2). The random forest classification model for 
gafftopsail catfish had an accuracy of 81% and an AUC of 0.80 (Table 1). 
Gafftopsail catfish were present in all bay systems, displaying an in-
crease in catches over time, with predominance in the upper to middle 
bay systems (Galveston Bay through Corpus Christi Bay) beginning 
around 1998 (Fig. 3). The random forest classification model for ladyfish 

Fig. 2. Random forest variable importance based on mean decrease accuracy scores for seven species collected in Texas bays through TPWD gillnet surveys from 
1982 to 2019. Variables are listed in the order of importance and include year, distance to major inlet (INLET), distance to major river mouth (RIVER), bays, and the 
residuals of feature variables (North Atlantic Oscillation [NAO] Index, mean sea level [MSL], temperature [TEM], salinity [SAL], dissolved oxygen [OXY] 
and season).
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had an accuracy of 77% and an AUC of 0.76 (Table 1). Ladyfish were 
present in all bays, with higher concentrations in the southern bay 
systems (San Antonio Bay through the Lower Laguna Madre) and 
increasing presence beginning around 2004 (Fig. 3). The gray snapper 
random forest classification model had the highest accuracy at 89% and 
an AUC of 0.79 (Table 1). In addition to the three top variables of 
importance listed above, season was also an important variable based on 
mean decrease accuracies over 80 (Fig. 2). Greatest catches of gray 
snapper occurred in Corpus Christi Bay, with presence increasing in all 
bay systems over time (Fig. 3).

The variables of importance varied among the four commercially and 
recreationally important species (common snook, tarpon, Gulf flounder 
and southern flounder). For common snook, the random forest classifi-
cation model had an accuracy of 85% and an AUC of 0.76 (Table 1). 
Year, distance to river mouths and distance to bay inlets were important 
variables based on mean decrease accuracies (Fig. 2). Common snook 
were only collected in the four lowermost bay systems (Aransas Bay, 
Corpus Christi Bay, Upper and Lower Laguna Madre) along the Texas 
coast, but increasing presence was observed throughout the years 

(Fig. 3). Tarpon random forest classification models had an accuracy of 
84% and an AUC of 0.66 (Table 1). Variables of importance for tarpon 
slightly differed with season prevailing, followed by year, distance to 
bay inlets and distance to river mouths (Fig. 2). Tarpon were collected in 
all bay systems, with the first presence in Sabine Lake detected in 2005, 
and also showed increase in catches over time (Fig. 3).

The two Paralichthyids examined in this study had differing results 
for their random forest classification models. The random forest classi-
fication model for Gulf flounder had an accuracy of 88% and an AUC of 
0.73 (Table 1). Distance to bay inlet, year and distance to river were 
important variables (Fig. 2). The presence of Gulf flounder occurs in the 
mid to lower bay systems of the Texas coast. Dominant catches occurred 
in Corpus Christi Bay and the Lower Laguna Madre, but declines began 
to occur in the Lower Laguna Madre after the year 2000 (Fig. 3). The 
random forest classification model for southern flounder had an accu-
racy of 70% and an AUC of 0.60 (Table 1). Year, distance to bay inlets 
and distance to river mouths were important variables affecting the 
incidence of southern flounder based on mean decrease accuracy values 
(Fig. 2). The presence of southern flounder was greatest from 1982 to 

Table 1 
Random forest classification model performance measured by accuracy, sensitivity, specificity and area under the ROC curve (AUC) to identify the conditions affecting 
incidence of seven species collected from Texas bays from 1982 to 2019 through TPWD gillnet surveys.

Model Validation Gafftopsail Catfish Ladyfish Gray Snapper Common Snook Tarpon Gulf Flounder Southern Flounder

Accuracy 0.81 0.77 0.89 0.85 0.84 0.88 0.70
Sensitivity 0.83 0.83 0.90 0.86 0.84 0.89 0.91
Specificity 0.77 0.68 0.68 0.65 0.49 0.57 0.29
AUC 0.80 0.76 0.79 0.76 0.66 0.73 0.60

Fig. 3. Heat maps displaying the presence of seven species collected in Texas bays (SL = Sabine Lake, GA = Galveston Bay, MA = Matagorda Bay, SA = San Antonio 
Bay, AR = Aransas Bay, CC = Corpus Christi Bay, UL = Upper Laguna Madre, LL = Lower Laguna Madre) from 1982 to 2019 through TPWD gillnet surveys.
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1990, before beginning to decrease, with lower capture rates occurring 
in the lower bay systems (Corpus Christi, Upper Laguna Madre and 
Lower Laguna Madre; Fig. 3).

4. Discussion

Year was the predominant variable affecting presence/absence of the 
seven fish species examined within this study, excluding tarpon and Gulf 
flounder in which year was the second dominant variable. This suggests 
that presence/absence of these species are gradually increasing or 
decreasing over time. Previous studies linked changes in species 
composition in Texas bays to an increase in warm-water species and a 
decrease in cold-water species (Fujiwara et al., 2019, 2022). However, 
temperature was not a principal factor in this study or in previous 
studies (Fujiwara et al., 2019; Torres Ceron et al., 2023). Recruitment 
variability in estuaries can be affected by several factors, including 
environmental (temperature, salinity, and NAO), hydrodynamic fea-
tures (tidal stream transport and river flow), and density-dependent 
processes (prey availability; Martinho et al., 2012). These changes in 
species composition may be due to a combination of favorable envi-
ronmental and hydrodynamic conditions for warm-water species, as 
well as changes in bycatch and fishing pressures over the years that can 
alter predator/prey interactions. Therefore, year may be representing 
the significance of year class success as conditions improve or decline for 
the selected species.

Previous research examining changes in species composition along 
the Texas coast determined that salinity was the most influential factor 
(Fujiwara et al., 2019, 2022; Torres Ceron et al., 2023). However, in this 
study the addition of distance to major bay inlet and distance to major 
river mouth resulted in these variables being the next most influential 
factors, respectively after year, in determining incidence for the 
included species. Both of these variables can affect the salinity gradients 
of the estuaries, with species typically remaining near bay inlets to be 
adjacent to areas of increased salinity (Sackett et al., 2008) and known 
to move away from river mouths to be closer to inlets during periods of 
high freshwater inflow and vice versa. Assessment of fish assemblages in 
estuaries along the Florida coast also determined that distance to inlets 
was a major feature that influenced species compositions, due to several 
estuarine species utilizing oceanic reproduction and relying on tidal 
currents for recruitment success (Gilmore, 1988; Kupschus and Tremain, 
2001), resulting in greater juvenile abundance near bay inlets.

Common snook was the only species examined where distance to 
river mouth was more influential than distance to bay inlet. In a Florida 
lagoon, common snook were observed using inlets during the spawning 
season, then moving away and occupying the river during non-spawning 
months. During times of high freshwater inflow, spawning could be 
disrupted if the lower estuary and inlet reached salinities lower than 24 
psu (Stevens et al., 2023). Common snook in Texas only occupy the four 
southernmost bays, where there are smaller freshwater tributaries for 
them to utilize, but these bays are not influenced by larger river systems 
that can create an influx of high freshwater inflow to disrupt spawning. 
Thus, as drought and reduced river flows occur, common snook may be 
able to expand their distribution into northern bays where lower salinity 
thresholds may no longer be an issue. Likewise, decrease freshwater 
inflow can cause population declines and for distributions to retreat 
from southern bays for species where lower salinities are essential. 
Froeschke et al. (2013) observed a higher probability of southern 
flounder occurring near tidal inlets with capture rates increasing with 
decreasing salinity, suggesting that decreased freshwater inflow can 
greatly impact their distribution. Both Paralichthyids examined here 
displayed population declines overall, with greater declines in the 
southernmost bays and shift to a higher presence in the northern bays of 
their limit.

Season was another important variable for species within the study 
that utilize estuaries as nursery grounds. Moreover, season was the 
primary influential variable for tarpon. Peak residency time of juvenile 

tarpon within estuaries has been observed to occur from July to 
December (Stein et al., 2016). Stephens et al. (2024) confirmed higher 
abundance in the fall gillnet surveys compared to the spring, concluding 
spring declines may be a result of thermal stress and the potential for 
tarpon to move to deeper portions of the bay, to seek refuge, that were 
not sampled during the surveys.

Spatiotemporal shifts in species compositions are occurring among 
bays along the Texas coast, with several factors affecting these distri-
butions. The incidence of fish species examined in this study were pre-
dominately affected by year, distance to major bay inlet and distance to 
major river mouth. While these variables are not directly linked to 
climate change or temperature, the conditions around these variables 
can be altered by climate shifts (i.e. decrease river flow, salinity increase 
at inlets, etc.). Therefore, multiple environmental, hydrodynamic, 
spatial and density-dependent conditions should be analyzed collec-
tively to obtain a better understanding of the features impacting species 
compositions.
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