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Abstract

Understanding biological and environmental factors that influence movement behaviors and

population connectivity of highly migratory fishes is essential for cooperative international

management and conservation of exploited populations, like bluefin tuna. Pacific bluefin

tuna Thunnus orientalis (PBT) spawn in the western Pacific Ocean and then juveniles dis-

perse to foraging grounds across the North Pacific. Several techniques have been used to

characterize the distribution and movement of PBT, but few methods can provide complete

records across ontogeny from larvae to adult in individual fish. Here, otolith biominerals of

large PBT collected from the western, eastern, and south Pacific Ocean, were analyzed for

a suite of trace elements across calcified/proteinaceous growth zones to investigate pat-

terns across ontogeny. Three element:Ca ratios, Li:Ca, Mg:Ca, and Mn:Ca displayed

enrichment in the otolith core, then decreased to low stable levels after age 1–2 years. Ther-

mal and metabolic physiologies, common diets, or ambient water chemistry likely influenced

otolith crystallization, protein content, and elemental incorporation in early life. Although sim-

ilar patterns were also exhibited for otolith Sr:Ca, Ba:Ca and Zn:Ca in the first year, variabil-

ity in these elements differed significantly after age-2 and in the otolith edges by capture

region, suggesting ocean-specific environmental factors or growth-related physiologies

affected otolith mineralization across ontogeny.

Introduction

Characterizing the complete life histories of highly migratory species is challenging due to

their long-distance movements through remote habitats and difficulties in observing them.

Knowledge of migration routes and population connectivity is important for effective
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(spatially explicit) management and conservation [1], especially for species that undertake

transoceanic movements and cross international boundaries, where they are susceptible to

fishery exploitation by multiple nations [2, 3]. A prime example is the Pacific bluefin tuna

(Thunnus orientalis). Pacific bluefin tuna (PBT) exhibit a suite of adaptations enabling fast

swimming speeds, and expansive migrations that connect disparate oceanic ecosystems across

hemispheres.

Methods such as electronic and conventional tagging and analysis of catch data have

enhanced our knowledge of life-stage specific behaviors of PBT [4, 5]. Documented spawning

of PBT occurs only in the western Pacific Ocean (WPO) [4] around the Philippines and East

China Sea in April-June and in the Sea of Japan in July-August [6, 7]. PBT spawning in the

East China Sea are 8+ years old, while those spawning in the Sea of Japan are typically age 3–6

years [7, 8]. Larval PBT spawned in the East China Sea and near the Philippines are then trans-

ported northward by the Kuroshio Current to utilize coastal areas as nurseries along the south-

ern coast of Japan [9, 10] and in the Sea of Japan [11]. Fish spawned in the Sea of Japan may

remain in local waters seeking preferred temperatures ranging from 23 to 26˚C [11]. Juvenile

PBT (age 0–2) then seek favorable thermal habitats with abundant prey in the vicinity of the

Kuroshio Current [12]. Some one to two year old PBT undergo transoceanic migrations to the

eastern Pacific Ocean (EPO), with migration journeys ranging from 1.2 to 5.5 months and

departure timings dependent on nursery foraging areas [6, 12]. PBT remain in the EPO for

several years (ranging from 3 to 9) before returning to the WPO [13].

In addition to the EPO, historical catch records indicate some portion of the population

also migrates across the equator into tropical south Pacific waters. For example, large PBT

have been caught in long line and recreational fisheries of New Zealand [14, 15]. While previ-

ous tagging studies provide useful information on movements of PBT to the EPO and the

SPO, these techniques are limited to fish behavior post-tagging, and do not provide birth-to-

capture life histories. In contrast, natural tags such as the molecular and elemental composi-

tions of fish tissues and hard parts, can offer unique opportunities to reconstruct more com-

plete life histories.

Natural tags have been applied to investigate migration dynamics in PBT. Some studies

examine the isotopic composition of muscle tissue including nitrogen stable isotopes [16, 17]

and Fukushima-derived radionuclides [18]. As a metabolically active tissue, isotopes in muscle

provide a time-window that is equal to the turnover rate [19]. For PBT, this time window is

approximately a year, which limits the scale of question that can be addressed.

In comparison, calcified structures such as fish otoliths (ear stones) form continuously by

radial growth and are metabolically inert once formed, thus otolith core-to-edge chemical

compositions span entire life histories of specimens. Otoliths grow by accretion of calcium car-

bonate crystals on a protein matrix, within endolymph fluid that is influenced by blood chem-

istry [20–22]. Daily physiological processes can affect aspects of blood chemistry (e.g. pH,

bicarbonate, protein content) [20, 23]. Environmental conditions such as temperature, salinity,

and dissolved oxygen [24] can also influence blood chemistry, and consequently some ele-

ments incorporated within the calcium carbonate structure are useful environmental proxies.

There is high uncertainty on the relative influence of intrinsic and extrinsic processes that

affect element incorporation into fish otolith and responses are species specific [24]. Few stud-

ies have yet examined the influence of endothermic physiology on crystal formation biochem-

istry in pelagic fish species, due to the difficulty of conducting controlled experiments [25].

Bluefin tuna are regional endotherms that can elevate the temperature of their eyes and brain

[26], therefore thermal physiology may influence otolith biomineral element incorporation

and confound interpretation of fish movement.
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To the extent that PBT move through geochemically distinct water masses and physiologi-

cal influences on biomineralization can be accounted for, PBT otolith geochemical records

could allow for reconstruction of migratory movements and identification of migratory con-

tingents. Previous studies utilized otolith chemistry to characterize signatures of young-of-the-

year PBT collected on spawning grounds [27, 28], to determine natal origins of PBT that

migrated to the EPO [29], to document discrete profiles of juveniles collected in the EPO [30],

and assess the timing of juvenile emigration from the WPO [31]. However, studies document-

ing continuous life histories for large PBF otoliths collected over wide areas of the north and

south Pacific are needed to better understand influences of physiology and water mass envi-

ronmental conditions on otolith chemical time series.

Here, otoliths of large PBT collected from the WPO, EPO and SPO were analyzed using

laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to document

chemical chronologies from juvenile to adult life in sequentially deposited growth bands. By

comparing complete elemental profiles of PBT sourced from different ocean basins, this study

explores if 1) certain elements reflect ocean basin-scale migratory movements or regional resi-

dence and 2) how physiology, the environment and in situ water chemistries influence the ele-

ment patterns across ontogeny in PBT otoliths.

Materials and methods

Otolith collection

PBT otoliths (n = 25) were collected from fishery-dependent sources in three regions of the

Pacific Ocean: the eastern Pacific Ocean (EPO, n = 10), the western Pacific Ocean (WPO,

n = 10) and south Pacific Ocean (SPO, n = 5) (Fig 1, Table 1).

As some samples were collected opportunistically, it was not always possible to obtain full

metadata for each tuna, as sometimes only the fish head was available. Region of collection

(EPO, WPO, SPO) was used to compare elemental patterns. Where possible, the fork length

(FL cm), weight (kg), sex and capture location were recorded. For EPO samples where only

heads were available, the operculum length (OL cm) was used to estimate FL using the equa-

tion: FL = OL�3.802–13.794; r2 = 0.94 [33]. Following collection, dried, tissue-free otoliths

were stored in labeled plastic vials. Whole sagittal otoliths were embedded in a clear epoxy

resin EpoFix (Stuers) so that the distal lobe could be used to identify the location of the core.

The resin was spiked with 30 ppm indium (115In) during mixing to serve as an internal ele-

mental marker of the epoxy. Embedded otoliths were sectioned using a low-speed diamond

blade saw to obtain a ~1 mm thick central section from the transverse plane (perpendicular to

the longest otolith axis, Fig 2).

Central otolith sections were mounted on a petrographic slide using thermoplastic (Crystal-

bond™) adhesive, with the distal lobe facing up, then surface polished using 600–1200 grit sili-

cone-carbide paper (Buehler) and ultrapure water until the distal lobe became transparent and

the sulcus groove formed a sharp narrow ‘V’, indicating the core was reached (Fig 2). Final pol-

ished sections were remounted on new petrographic slides, such that each slide contained sev-

eral closely spaced otoliths arranged in a random sequence. The slides were scanned at high-

resolution to assist with placement of laser transects.

Elemental measurements and data analysis

Elemental concentrations were measured using a New Wave 193 nm laser coupled to an

7500ce Agilent inductively coupled plasma mass spectrometer at the University of Texas at

Austin. All samples and standards were loaded into a large format cell with fast washout times

(< 1 s). All laser scans began in the otolith core and moved outwards along the longest growth
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axis (Fig 2). Test scans revealed optimal ion counts using gas flows of 850 mL min-1 for Ar and

800 mL min-1 for He. Otolith sections and standards were pre-ablated to remove any surface

contamination using a 75μm spot, 50μm s-1 scan rate, 20 Hz repetition rate and 40% power.

Data acquisition parameters were 35% power, 20 Hz with a 50 μm spot moving at 5μm s-1.

Laser fluence during analysis averaged 2.12 ± 0.02 J/cm2. The quadrupole time-resolved

method measured 13 masses using integration times of 10 ms (24Mg, 43-44Ca, 88Sr, 115In), 20

ms (25Mg, 55Mn), and 50 ms (7Li, 59Co, 63Cu, 66Zn, 137-138Ba). Time-resolved intensities were

converted to concentration (ppm) equivalents using Iolite software (Univ. Melbourne, [34]),

with 43Ca as the internal standard and a Ca index value of 38.3 weight %. Baselines were deter-

mined from 30-s gas blank intervals measured while the laser was off, and all masses were

scanned by the quadrupole. USGS MACS-3 was used as the primary reference standard and

accuracy and precision were proxied from replicates of NIST 612 analyzed as an unknown.

NIST 612 analyte recoveries were typically within 2% of GeoREM preferred values (http://

georem.mpch-mainz.gwdg.de).

Concentration data (ppm) were converted to molar ratios to facilitate comparisons with

previous studies. To remove high frequency noise, time-series were smoothed by sequential

application of 7-point moving median and 7-point moving average filters. In order to remove

edge effects associated with intersection of the laser with epoxy resin, otolith edges were

defined at crossover points where 43Ca and 115In counts-per-second (CPS) were < 200,000

Fig 1. Geographical map of opportunistic collected PBT otoliths samples from the eastern Pacific (EPO), western Pacific (WPO) and south Pacific (SPO); different

colored ellipses represent approximate collection regions.

https://doi.org/10.1371/journal.pone.0275899.g001
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and> 1000 CPS, respectively. Using these criteria, there were some instances when Mg:Ca

and Li:Ca increased shortly before the edge, which was likely due to thermoplastic Crystal-

bond™ cement penetrating the intersection of the otolith-epoxy edge. One otolith (NZ02)

clearly had translucent Crystalbond™ covering the surface that was confirmed after analysis,

which affects the Mg:Ca values. Therefore, Mg:Ca was not plotted for this specimen (see S1

Fig). Approximate core-to-edge distances of mean annuli distances along the laser path (see

Fig 2 in [35]) were measured in Image J and superimposed on elemental time-series plots to

discern how elemental patterns generally relate to age. The mean annuli distances were

1,223 μm in year one, 1,577 μm in year two, 2,054 μm for year 3+, as measured from the otolith

core and along the laser path.

To document regional spatial variation in elemental signatures at times of capture, the

molar element:Ca ratios at the edge of the otoliths were compared among EPO, WPO and

SPO collection regions. For each otolith, the final 100 μm of the otolith edge was averaged to

represent the recent otolith material accreted in the region of collection, which represents dif-

ferent time frames for individual fish. The otolith edge data was then inspected for outliers

using a Grubbs test, with identified outliers removed from calculated averages and subsequent

statistical analysis. Normality was assessed using a Kologorov-Smirnov test and only Mg:Ca

was not normal distributed, and thus a log transform was used to meet normality assumption

for Mg:Ca. A Brown-Forsythe test confirmed that the standard deviations were not signifi-

cantly different among regions and thus the parametric ANOVA was appropriate, using

Table 1. Pacific bluefin tuna (PBT) metadata including date, ocean region of collection region, local region of collection; sex, gilled and gutted (GG) weight and

fork length (FL) reported where available. Estimated ages were derived from length-age relationships reported in [32]. Laser distance measured as in Fig 2B.

PBT_ID Date PBT collected Ocean PBT collected Local region PBT collected Sex FL (cm) Estimated age (yr) GG weight (kg) Laser distance (μm)

EP01 9/20/17 East Pacific San Deigo, Califronia USA M 197 9 156 3086

EP02 7/29/17 East Pacific San Deigo, Califronia USA 182 7+ 167 3165

EP03 7/20/17 East Pacific San Deigo, Califronia USA 179 7 3258

EP04 8/8/16 East Pacific San Deigo, Califronia USA 180 7 2818

EP05 8/8/16 East Pacific San Deigo, Califronia USA 180 7 3310

EP06 10/30/17 East Pacific San Deigo, Califronia USA 178 7 103 3284

EP07 7/29/16 East Pacific San Deigo, Califronia USA F 181 7+ 2929

EP08 7/19/17 East Pacific San Deigo, Califronia USA 173 6+ 3127

EP09 7/7/17 East Pacific San Deigo, Califronia USA 173 6+ 2957

EP10 8/20/16 East Pacific San Deigo, Califronia USA 174 7 2726

WP01 5/12/17 West Pacific Nansei Islands F 225 13 219 3342

WP02 5/5/17 West Pacific Nansei Islands F 222 12 205 3355

WP03 5/8/17 West Pacific Nansei Islands F 210 10 167 3345

WP04 5/7/17 West Pacific Nansei Islands F 208 10 160 2903

WP05 5/4/17 West Pacific Nansei Islands F 206 10 3083

WP06 5/11/17 West Pacific Nansei Islands M 222 12 214 3425

WP07 5/10/17 West Pacific Nansei Islands M 199 9 156 3145

WP08 5/12/17 West Pacific Nansei Islands F 223 13 241 3748

WP09 5/12/17 West Pacific Nansei Islands 203 9 154 3230

WP10 5/10/17 West Pacific Nansei Islands F 212 10+ 156 3439

NZ01 8/22/07 South Pacific New Zealand F 245 22 180 4187

NZ02 5/6/13 South Pacific New Zealand F 168 6 100 3212

SP01 3/31/18 South Pacific Cook Islands M 265 26+ 4052

SP02 8/15/17 South Pacific Cook Islands M 228 14 255 3599

SP03 8/23/18 South Pacific Cook Islands F 253 26+ 4135

https://doi.org/10.1371/journal.pone.0275899.t001

PLOS ONE Chemical histories of bluefin tuna

PLOS ONE | https://doi.org/10.1371/journal.pone.0275899 October 14, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0275899.t001
https://doi.org/10.1371/journal.pone.0275899


PRISM 8 statistical program. To test if elemental differences were present among each region,

a one-way analysis of variance (ANOVA) test was performed for followed by a Holm-Sidak

multiple comparison test. For element:Ca ratios that were significantly different among

regions, quadratic discriminant function analysis (QDFA) was used to determine whether

PBT from each region could be chemically identified using a jackknifed classification matrix

using SYSTAT 13. Due to low sample size from the SPO (N = 5), the number of elements used

in the QDFA had to be limited to three. The first and second canonical scores were then plot-

ted to visualize separations among regions.

Results

Study otoliths were collected from 25 PBT: 10 from EPO, 10 from WPO and 5 from SPO (Fig

1, Table 1). EPO and WPO collections were from 2016 and 2017, whereas SPO collection

spanned from 2007 to 2018. Estimated specimen ages (based on length from Shimose et al.

Fig 2. Schematic of Pacific bluefin tuna otolith preparation for elemental analysis. Otoliths of PBT were sectioned

in the transverse plane (a, red shaded box) and the ~1 mm section was polished to expose the core; a laser scan (b, red

dashed line) starting from the early life core region was scanned across the otolith growth bands encompassing the

complete life history, with the laser path turning at the inflection point; the final 100 μm of data (small yellow box) was

averaged to represent the recent otolith material deposited in the region of collection.

https://doi.org/10.1371/journal.pone.0275899.g002
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2009) ranged from 6 to 26 year with most young fish coming from the EPO and one age 6

specimen from the SPO (Table 1).

Mean element:Ca profiles

Element:Ca profiles are remarkably similar among PBT otoliths in the general trend over the

transect (Fig 3). Element:Ca data are grouped by region, but it is possible that PBT migrated

across different regions throughout life. Li:Ca, Mg:Ca and Mn:Ca are elevated in core regions,

then decrease to low values following the first (estimated) annuli position. Some specimens

with peak Li:Ca and Mg:Ca near the otolith edge were removed as outliers (as discussed

below). Highest Mn:Ca values occur in cores, with EPO slightly higher than WPO and SPO,

but all specimens show a secondary peak between 800 to 1000 μm that rapidly decreases to

near detection limits after ~age two (past 1500 μm). Note that all fish are assumed in the WPO

spawning ground during the period that corresponds to the core. In contrast to Mn:Ca pat-

terns, Zn:Ca, Sr:Ca and Ba:Ca are low in cores then show increasing trends after the second

annuli that are differentiable by collection region (Fig 3). Zn:Ca gradually increase from core

regions and plateau up to ages 1 to 3+, but increase again after 3000 μm. Sr:Ca show a small

increase in the core that levels out through age-0 then further increases to 1800 μm at approxi-

mately age-3, before further increasing by region; continual increasing values characterize

EPO and SPO, whereas lower stable values differentiate WPO. Ba:Ca diverges among capture

regions after approximate age-3, with sharp, moderate, and much more gradual increases dis-

tinguishing the EPO, SPO, and WPO, respectively. In contrast to the other element:Ca ratios,

otolith Ba:Ca patterns are highly oscillatory with high variability among individuals (S1 Fig),

possibly reflecting differential movement among ocean regions prior to capture. Compared to

EPO and SPO, oscillatory otolith Ba:Ca profiles have much lower amplitudes for WPO.

Mean otolith edge patterns

The Grubbs test revealed 3 outliers (Li:Ca = 7.53 for EP05; Mg:Ca = 0.563 for NZ02, Mn:

Ca = 1.66 for EP05) that were removed before the 1-way ANOVA test. Li:Ca, Mg:Ca, and Mn:

Ca are not significantly different among regions, while Zn:Ca, Sr:Ca, and Ba:Ca are signifi-

cantly different (Table 2; Fig 4). Holm-Sidak’s multiple comparison tests indicate that otolith

edge Zn:Ca was significantly higher in the SPO compared to the EPO (p = 0.02) and WPO

(p = 0.04), but is not different between EPO and WPO (p = 0.52). Otolith edge Sr:Ca is signifi-

cantly lower in the WPO versus EPO (p = 0.01) and SPO (p<0.001), but not different between

the EPO and SPO (p = 0.07). The EPO has the highest otolith edge Ba:Ca, with significantly

lower values in the WPO (p = 0.002), but EPO and SPO are not significantly different

(p = 0.19) (Fig 4).

QDFA based on only Zn:Ca, Sr:Ca and Ba:Ca resulted in overall jackknifed classification

success of 72% (Table 3). Classification success varies by each region, with 70% accuracy in the

EPO with 1 misclassification occurring in the SPO and 2 in the WPO. The lowest classification

success of 40% occurred in the SPO, with 3 misclassifications attributed to the EPO. WPO has

the highest classification success of 90%, with only 1 misclassification in the EPO (Table 3).

The regional classification differences were clear in the plot of the first and second discrimi-

nant scores (Fig 5). Two SPO fish clearly grouped together and were separated from the EPO

and WPO, while 3 SPO fish more closely grouped to the EPO (Fig 5).

Discussion

Reconstructing the life histories of migratory fishes requires tools that record endogenous and

exogenous events experienced throughout ontogeny. This is the first study to investigate
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otoliths of PBT collected from the SPO, a poorly understood migratory path where samples

have rarely been collected or investigated. The element:Ca profiles of PBT otoliths collected

from three regions (WPO, EPO, SPO) are similar during early life from age-0 to age-1 for all

element:Ca ratios examined. This consistency suggests either 1) similar water mass occupancy

during early life, 2) a strong physiological control on element incorporation in early life

Fig 3. Mean element:Ca profiles for otoliths of Pacific bluefin tuna. (see Table 1 for fish collection details) collected from the eastern Pacific (EPO = blue, N = 10),

western Pacific (WPO = red, N = 10), and south Pacific (SPO = green, N = 5) Ocean; solid lines represent mean values and shading depicts ± standard deviation across

laser distance from core (0 μm) to edge; dashed vertical lines denote approximate annuli distances derived from [35].

https://doi.org/10.1371/journal.pone.0275899.g003
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independent of ambient water concentration [23, 36], or 3) a combination of both. This result

is expected given that all fish originate from the WPO, however it is not possible to differenti-

ate between the influence of regional water chemistry and physiological control. Wells et al.

[29] found statistically significant differences in otolith core Mn:Ca, Mg:Ca, Sr:Ca and Zn:Ca

between YOY fish from the East China Sea and Sea of Japan, suggesting at least these elements

are influenced by regional conditions that vary interannually.

As juveniles, after the estimated age of 3, trends of three element:Ca profiles (Zn:Ca, Sr:Ca,

and Ba:Ca) diverge by region of collection suggesting that environmental factors that vary in

time and space (e.g., temperature and salinity) influence incorporation of those elements [24].

Thus, otolith element:Ca patterns characterized in this study align well with our current

understanding of PBT life history, that includes a common spawning ground in the WPO with

juveniles either remaining resident in the WPO or migrating to the EPO [4, 16, 17, 37] or

larger fish moving into the SPO [14, 15].

Otolith geochemical records provide useful life history information for pelagic tuna species

including natal origin determination [29, 38, 39], stock structure identification [38, 40, 41] and

migrations with life history transects [30, 42–45]. Ontogenetic otolith chemistry patterns

revealed by LA-ICP-MS core-to-edge transects in this study are similar to those derived from

LA-ICP-MS discrete spot analyses [30] on PBT, as well as probe-based otolith studies of other

migratory tuna species including south Pacific albacore Thunnus alalunga [42], skipjack tuna

Katsuwanus pelamus [43] and southern bluefin tuna Thunnus maccoyii [44, 45]. Similarities in

elemental profiles include higher Li and Mn in early life and general increases in Sr and Ba in

older ages. Employing probe-based analysis to quantify continuous elemental patterns across

sequential calcified and proteinaceous growth bands provides a chemical calendar revealing

the life histories of highly migratory fish.

Identifying drivers of elemental variations during life requires understanding the relative

influence of physiological and environmental processes on element incorporation and

Table 2. One-way ANOVA results based on mean otolith edge (outer 100 μm) element:Ca values for Pacific bluefin tuna for exploring regional differences in otolith

chemistry among the eastern Pacific (EPO), western Pacific (WPO) and south Pacific (SPO). Only Mg:Ca was log transformed to meet normality assumption.

Element Factor SS DF MS F P value

Li:Ca Region 1.38 2 0.6902 1.32 0.2883

Residual 10.98 21 0.5228

Total 12.36 23

log(Mg:Ca) Region 0.3879 2 0.194 3.335 0.0552

Residual 1.221 21 0.05816

Total 1.609 23

Mn:Ca Region 0.2734 2 0.1367 1.119 0.3452

Residual 2.564 21 0.1221

Total 2.838 23

Zn:Ca Region 408.6 2 204.3 4.642 0.0208

Residual 968.2 22 44.01

Total 1377 24

Sr:Ca Region 1.333 2 0.6664 10.73 0.0006

Residual 1.366 22 0.0621

Total 2.699 24

Ba:Ca Region 176 2 87.99 8.085 0.0023

Residual 239.4 22 10.88

Total 415.4 24

https://doi.org/10.1371/journal.pone.0275899.t002
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dissolved ion transfer from water and food, across gill and gut membranes, transport through

blood-endolymph interfaces, and ultimately otolith biomineralization [24, 46]. Analytical limi-

tations must also be recognized when interpreting laser scan profiles in biominerals. Optimiz-

ing laser setting (power (J/cm2), repetition rate (Hz), scan rate (um s-1) and ICP MS

Fig 4. Boxplots of otolith edge values (mean of final 100 μm) for each region. EPO = blue, WPO = red, SPO = green. One-

way ANOVA significant differences (see Table 1) among regions were further tested with a Holm-Sidak multiple comparison

test with lower case letters indicating regions that are significantly different; regions that were not significantly different share

the same lower case letter.

https://doi.org/10.1371/journal.pone.0275899.g004
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parameters (i.e. carrier gas (He, Ar) flow rate, cone distance, etc.) and using matrix-matched

replicated standards is important for comparing studies conducted in different labs. Although

laser spot diameters are standardized, crystal growth and accretion rates decrease with age

[47], thus the laser integrates different time windows based on the age and growth rate of the

fish. The geographic otolith edge comparison here integrated different time frames in the PBT

since they differed in age, but early life otolith core comparisons should reflect similar growth

and biomineral accretion rates in larval/juvenile PBT, regardless of collection location.

In PBT otolith cores, Li:Ca, Mg:Ca and Mn:Ca were enriched, then gradually decreased to

low stable values after age 1. Physiological regulation of these elements have been shown in tel-

eost fish [24, 48]. Thus, the enrichment of otolith Li:Ca, Mg:Ca and Mn:Ca, at early life may

reflect periods of rapid juvenile growth rate, higher protein accumulation versus aragonite

crystallization, and different metabolic rates before PBT exhibit endothermy. PBT undergo a

Table 3. Jackknifed classification success to the three regions (EPO, WPO, SPO) derived from quadratic discrimi-

nant function analysis based on otolith edge element:Ca values of Pacific bluefin tuna.

Known region of capture Predicted region of capture % correct classification

EPO SPO WPO

EPO 7 1 2 70

SPO 3 2 0 40

WPO 1 0 9 90

Total 11 3 11 72

https://doi.org/10.1371/journal.pone.0275899.t003

Fig 5. Quadratic discriminant function analysis canonical score plot. EPO = blue circle, WPO = red square, SPO = green triangle. The overall classification

accuracy using Pacific bluefin tuna otolith edge Zn:Ca, Sr:Ca and Ba:Ca was 72%.

https://doi.org/10.1371/journal.pone.0275899.g005
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metamorphosis from larvae to juveniles at 20–35 days post hatch, with rapid increases in pro-

tein synthesis and somatic growth that correspond with drastic increases of protein-DNA and

RNA-DNA ratios [49]. This period of rapid somatic growth would result in increased otolith

accretion rates [50]. The peak of Mn:Ca within the core, but following the primordium within

age-0, may correspond with the larvae-to-juvenile transition to rapid growth, where otolith

morphology and growth axes shift. The fact that element concentrations change at this inflec-

tion point, where the aragonite growth axes also change direction, is consistent with ontoge-

netic changes in mineral growth or crystal formation as a control influencing elemental

uptake. After the first 1000 μm (~age 1), core-enriched elements (Li:Ca, Mg:Ca and Mn:Ca)

decrease and remain low throughout ontogeny.

Results from other studies suggest that Mn:Ca and Mg:Ca are also influenced by environ-

mental conditions. These ratios were most useful for multivariate assignment of YOY PBT col-

lected from two separate spawning regions using both solution- [27, 51] and LA-ICP-MS-

based analysis of core regions [29]. In addition, Mn:Ca and Mg:Ca within the first 500 μm of

core otolith differed inter-annually, which may reflect interannual environmental variability

experienced by PBT spawned in different years (e.g., ambient water temperature and chemis-

try). PBT metabolic rates, foraging behavior, and prey availability within the two known

spawning grounds, may also affect differential incorporation of Mn [52] and Mg [36] during

early life. All of these factors can vary from year to year, so annual juvenile otolith chemistry

baselines from each spawning region are essential for inferring natal origins of age-classed

matched unknowns [29].

Our finding that Zn:Ca, Sr:Ca, and Ba:Ca have similar values in otolith cores but differ sig-

nificantly in the last 100 μm of otolith edges among the three capture areas supports that these

element:Ca ratios may proxy ocean basin-specific differences. The outer 100 μm of otolith

growth likely represent� 33 days in larger individuals with slower growth rates based on

direct validation studies of southern bluefin tuna (Thunnus maccoyii) with estimated mean

otolith accretion rates of 3 μm day-1 [53]. For such time intervals it is reasonable that the speci-

mens largely or completely resided within the capture regions, and thus associated element:Ca

values were also obtained within capture regions.

Other studies have shown that otolith chemistry can distinguish among widely separated

collection regions in the Pacific [40, 43]. For example, Arai et al. [43] found (EPMA-based) Sr

profiles effective for distinguishing skipjack tuna migratory behavior between temperate and

tropical waters, including a fish tagged in the WPO that migrated to the SPO and was recap-

tured [43]. For skipjack, Sr concentrations were lower in the cooler (19-22˚C) temperate

waters (Japan coast) and higher in warmer (29-30˚C) tropical waters near the equator. Our

finding that lowest PBT otolith edge Sr concentrations occur in specimens collected from the

WPO, is consistent with the skipjack tuna patterns of Arai et al. [43], but we cannot confirm

the specific temperature experiences of WPO fish were lower compared to EPO or SPO fish.

Based on differences in (EPMA-based) Na, Ca, Sr, S, K, and Cl profiles for PBT otolith,

Proctor et al. [44] suggested that ontogenetic variability was greater than any environmental

variability, and thus otolith chemistry would not be useful for delineating geographic stock

structure due to the homogeneity of ocean chemistry for these conservative elements. How-

ever, injection of sea-cage PBT with SrCl2 in the same study resulted in a strong spike in otolith

concentrations, suggesting transfer of dissolved Sr2+ from blood to otolith, but it is unknown

how that experiment reflects natural conditions [20, 23, 54]. Sr2+ substitution for Ca2+ during

calcium carbonate biomineralization is well documented and widely attributed to similar ionic

radii [53, 55, 56]. That Sr2+ is only found in the non-protein salt fraction of otoliths and not

under physiological regulation [22], supports otolith Sr:Ca as an environmental proxy of water

temperature and salinity [57], but may be complicated by biochemical, biological and
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physiological interactions, including sexual maturation [20, 23, 54] and the development of

increased endothermy with body size [58].

We find highest Ba concentrations in otoliths collected in the EPO, a well characterized

upwelling region [59, 60]. Cold, nutrient rich upwelled water typically exhibits higher dis-

solved Ba concentrations than surface waters [61, 62]. Barium has been shown to proxy

upwelling conditions in diverse calcified biominerals, including coral skeleton [63, 64], shark

vertebrae [65] and fish otoliths [30, 40, 66]. Tagging studies demonstrate that PBT experience

cold water temperatures when they occasionally dive below the thermocline, likely to forage

on deep-water prey [67, 68]. EPO PBT mainly reside at the surface the water column [69], and

move latitudinally over areas of coastal upwelling with high primary productivity [5]. The

oscillations of otolith Ba:Ca detected after age 3 in our study, could follow movement into

deeper, cooler water, when PBT forage on deep water prey and increased dissolved Ba is taken

up through the gills or intestine. The width of oscillating Ba:Ca peaks are approximately sea-

sonal (~300 μm) in transects of EPO and SPO otoliths. Ba:Ca amplitudes fluctuate between

10–20 μmol mol-1 in these specimens, compared to amplitudes < 10 μmol mol-1 in WPO spec-

imens (see S1 Fig). These regional Ba:Ca patterns could reflect larger-scale seasonal move-

ments to upwelling areas, as consistent with archival tagging data [5].

Highest otolith edge Zn concentrations correspond to SPO PBT, the region where the larg-

est and oldest (3 PBT estimated 20+ years) fish were collected. Because Zn in seawater is com-

monly bound to organic complexes, dissolved Zn2+ is not readily available for uptake

compared to Sr2+ and Ba2+ [54, 70]. Previous studies indicate that Zn2+ is under strong physio-

logical control in fish, serving as co-factors in many enzymes and proteins [22, 54, 71]. Ele-

vated Zn:Ca in otolith core regions, followed by decreasing levels with age, is a common

ontogenetic pattern reported in other species [24]. Our data demonstrate an opposite pattern

with Zn:Ca increasing with ontogeny and highest otolith edge Zn:Ca occurring in the oldest

PBT. Increasing otolith Zn:Ca with age in PBT could indicate a physiological control, such as

sexual maturity [54, 72] or reduced otolith accretion rate with age.

We found an overall average discrimination classification success of 72% among capture

regions using Sr:Ca, Ba:Ca and Zn:Ca in the outer 100 μm of otolith edges. The limitation of

using a constant otolith edge distance (100 μm) is that this distance will represent different

time frames, equating to potentially years in the oldest PBT (7–20+ years in this study) as oto-

lith increment growth slows down significantly with age in bluefin [73]. This outer-edge dis-

crimination approach also assumes that the fish have been in capture regions long enough for

local signatures to have been incorporated. All WPO PBT were collected in same month and

year (May 2017), had similar estimated ages (range 9–13 y, mean ± standard deviation = 11

±1.5 y) and exhibited the highest classification accuracy of 90% with only one misclassification.

Thus, temporal variability of both collection location (all samples in one month) and otolith

accretion rate was minimized for these specimens. The next highest classification accuracy was

for EPO PBT at 70%, with two fish misclassified from WPO and one fish mistaken from SPO.

The youngest PBT were also collected from the EPO, with a mean estimated age 7.2±0.7 years

and collection dates within a year (July 2016 to Oct 2017). The lowest classification accuracy

(40%) was obtained for SPO adults, likely due to wide ranging collection dates from 2007 to

2018, differences in fish size and age (6 to 20 y), and more disparate collection regions, includ-

ing New Zealand and the Cook Islands separated by over 3,000 km in tropical waters, com-

pared to EPO and WPO in temperate waters. The influence of interannual variability in

oceanic conditions (i.e. temperature shifts for La Nina versus El Nino) on otolith biominerali-

zation is a recognized factor degrading classification success using otolith geochemical signa-

tures [74].
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Conclusion

This study examined if elemental time series of PBT otoliths reflect ocean basin-scale migra-

tory movements or regional residence. Elemental transects of PBT otoliths provide ontogenetic

records of physiological and environmental histories, although it is often difficult to discern

between the two. Similarities of Li:Ca, Mg:Ca, and Mn:Ca profiles for juvenile PBT 1–2 years

old (to 1500 μm distance from core) among all three geographically distinct capture regions

are potentially related to similar thermal physiology, rapid growth and otolith accretion rates

and a common region of origin within the WPO. After 2–3 years, Sr:Ca, Ba:Ca, and Zn:Ca

begin to diverge by region of collection, likely reflecting spatial and temporal oceanographic

variability experienced when PBT undertake broadscale migrations, or physiological influ-

ences associated with changes in foraging and/or breeding behavior. Without controlled labo-

ratory experiments, which are very difficult for large bodied and fast-moving tunas, the

relative influences water chemistry, ambient temperature, diet and metabolic physiology on

otolith elemental uptake will be premised on descriptive studies. Additional research on cap-

tive reared PBT or otoliths of tagged and recaptured individuals will expand knowledge on ele-

mental uptake in otolith biominerals in PBT. Future otolith geochemical studies involving a

greater number of older (larger) specimens should further advance understanding PBT life his-

tory and migratory behaviors. Refining the otolith chemistry approach to characterize behav-

ior including migratory and resident contingents, can help mangers better understand stock

dynamics and improve stock assessment models for highly migratory species.
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S1 Fig. Elemental profiles of individual PBT otoliths collected from the eastern Pacific

(EPO), western Pacific (WPO) and south Pacific (SPO); different colored lines represent

individual fish from each region. See Table 1 for details on collection. Asterisk (�) indicates

visible crystal bond on surface of NZ02 that was removed from Fig 1.
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