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were quantified using long-term coastal gill net survey data 
across five bay systems in Texas. Relationships between 
co-occurrence, and environmental factors and shark sizes 
were examined within and across species. Co-occurrence of 
blacktip sharks and bull sharks varied spatially and tempo-
rally, with a significant increase in interspecific co-occur-
rence from the 1970s to 2010s, and a significant decrease 
in bull shark concentrations through time. Changes in envi-
ronmental conditions, specifically increasing salinities, may 
have been responsible for increased blacktip and bull shark 
co-occurrence, and potential interspecific competition, 
which in turn may have led to decreased bull shark concen-
trations to reduce intraspecific competition. However, more 
refined questions are needed before predictive frameworks 
can be developed concerning the contexts under which co-
occurrence is prevalent. Quantifying resource use among 
coastal sharks will help elucidate the drivers and implica-
tions of co-occurrence, and the potential for competitive 
interactions within and across species.

Introduction

Predators serve essential roles in their respective ecosys-
tems through top-down effects and the translocation of bio-
mass and nutrients that stimulate bottom-up processes (e.g., 
Helfield and Naiman 2006; Schmitz et al. 2010). These 
ecological roles are shaped by community composition, 
including co-occurrence and competition with other preda-
tors and conspecifics (e.g., Owen-Smith and Mills 2008; 
Bolnick et al. 2011; Browning et al. 2014). When resources 
are limited, ecological theory predicts that niche partition-
ing will occur within and across species to promote coex-
istence (Pianka 1973; 1974; Schluter and McPhail 1992). 
However, natural and anthropogenic disturbances continue 
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to affect many predator populations and are reshaping pop-
ulation and community structure, which may be affecting 
competitive interactions and niche overlap among sharks 
(reviewed by Heithaus et al. 2008; Holt 2009; Estes et al. 
2011).

Overlap in predator–human habitat use increases vulner-
ability of species to anthropogenic disturbances (Eero et al. 
2011; Maxwell et al. 2013; Dulvy et al. 2016), and coastal 
sharks have been particularly affected due to exploitation, 
unintended captures, and deterioration of essential habitats 
(Ferretti et al. 2010; Dulvy et al. 2014). Natural or anthro-
pogenically stimulated changes in species presence/absence 
within shark populations can lead to considerable differ-
ences in shark behavior and niche widths (Chase and Lei-
bold 2003; Papastamatiou et al. 2006; Brena et al. 2015), 
and reductions in co-occurrence and niche similarity may 
destabilize coastal food webs (Pace et al. 1999; Jackson 
et al. 2001; Estes et al. 2011). As such, elucidating shark 
community dynamics within coastal ecosystems, and the 
factors that shape species co-occurrence, is important for 
understanding how ecological communities may respond to 
changes in shark abundances, distributions, and behaviors 
(Cornelius et al. 2001; Ruppert et al. 2013).

Ecosystems where sharks co-occur across a gradient of 
environmental conditions and human disturbance provide 
ideal study areas to investigate the response of ecological 
communities to changing shark populations. The Texas 
coastline provides habitat for diverse elasmobranch assem-
blages, which include juvenile and adult blacktip sharks 
(Carcharhinus limbatus) and bull sharks (Carcharhinus 
leucas), and serves as nurseries for at least bull sharks 
(Hueter and Tyminski 2007; Froeschke et al. 2010a). Pub-
lished studies in Texas and other Gulf Coast states suggest 
several extrinsic factors affect catch rates of these species, 
providing a foundation for developing and testing hypoth-
eses concerning the factors that may shape shark co-occur-
rence in the Western Gulf of Mexico. Using catch rates and 
movement data, published studies show that both blacktip 
sharks and bull sharks exhibit preferences for warm tem-
peratures, moderate salinities, and shallow depths through-
out the Gulf of Mexico (Baughman and Springer 1950; 
Norden 1966; Simpfendorfer et al. 2005; Blackburn et al. 
2007; Parsons and Hoffmayer 2007; Wiley and Simpfend-
orfer 2007; Heupel and Simpfendorfer 2008; Carlson et al. 
2010; Drymon et al. 2010, 2014; Froeschke et al. 2010b; 
Heupel et al. 2010; Bethea et al. 2015; Ward-Paige et al. 
2015). However, these patterns are not consistent across 
regions (e.g., Grace and Henwood 1997; Shipley 2005; 
Heithaus et al. 2009), and other factors, including dis-
solved oxygen content (Shipley 2005; Heithaus et al. 2009; 
Drymon et al. 2014), prey availability (Ortega et al. 2009; 
Drymon et al. 2013; Sargarese et al. 2016), predation risk 
(Matich and Heithaus 2015), habitat type (Carlson 2002; 

Steiner et al. 2007; Curtis et al. 2013; Drymon et al. 2014), 
and red tides (Sagarese et al. 2017) play a role in shap-
ing the distribution patterns of these sharks, with sugges-
tions that bull sharks may be more robust to environmental 
variability than blacktip sharks (Steiner et al. 2007). Using 
catch rate data, Froeschke et al. (2010b) found that salinity, 
water temperature, and depth were the most important fac-
tors affecting the relative abundances of blacktip sharks and 
bull sharks in coastal Texas, with spatial variability in catch 
rates potentially attributed to bay-specific differences in 
nursery quality (Froeschke et al. 2010a). As such, co-occur-
rence of blacktip sharks and bull sharks is likely driven by 
these factors.

Here, spatial and temporal differences in blacktip shark 
and bull shark distributions are investigated in five coastal 
bay systems within Texas across the last 40 years, to 
explore the extrinsic and intrinsic factors that lead to co-
occurrence within and across species. Specifically, data 
were used to determine (1) if blacktip sharks and bull 
sharks co-occur over time and space, and (2) what extrinsic 
(i.e., environmental) and intrinsic (body size) factors cor-
relate with events when more than one shark is captured.

Methods

Study sites

The Texas coast comprises a series of bay systems geo-
graphically separated from the Gulf of Mexico by seven 
barrier islands that limit physical and biological connec-
tivity (Fig. 1). These systems range from predominantly 
freshwater (Sabine Lake) to hypersaline habitats (Laguna 
Madre) that support distinct ecological communities (e.g., 
Froeschke et al. 2010b; Kim et al. 2014). Many of these 
bay systems are heavily influenced by precipitation and 
freshwater inputs from rivers (Kim et al. 2014), and spa-
tial variability in precipitation and freshwater input typi-
cally leads to a salinity gradient across the Texas coast, 
with decreasing salinities within bay systems as latitude 
increases (Froeschke et al. 2010b; Mohan and Walther 
2015). Similarly, water temperatures are typically cooler as 
latitude increases, with higher dissolved oxygen concentra-
tions in mid-latitudinal bay systems (i.e., San Antonio Bay 
and Aransas Bay; Froeschke et al. 2010b).

Among the seven bay systems that comprise the Texas 
coastline, blacktip sharks and bull sharks predominantly 
co-occur at a broad geographical scale in five of these sys-
tems (listed north to south)—Galveston Bay, Matagorda 
Bay, San Antonio Bay, Aransas Bay, and Corpus Christi 
Bay (Froeschke et al. 2010b). Blacktip sharks exhibit 
minimal use of Sabine Lake, likely because of low salinity 
conditions, and bull sharks exhibit minimal use of Laguna 
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Madre, likely because of hypersaline conditions (Froeschke 
et al. 2010b). Each of the five bay systems where blacktip 
sharks and bull sharks co-occur regionally exhibit different 
physical characteristics as described above (e.g., Thronson 
and Quigg 2008; Froeschke et al. 2010b). Each bay system 
also has different historical patterns in human develop-
ment and disturbance, including recreational and commer-
cial fishing communities that are typically most active in 
Galveston Bay (e.g., McEachron and Green 1984; Ditton 
et al. 1992), because of the large human population the 
Houston metropolitan area supports (ca. 2.2 million people; 
U.S. Census Bureau 2010). As such, the spatial variability 
in conditions and disturbance among bay systems provides 
both a physical and anthropogenic gradient in which to 
investigate shark co-occurrence patterns.

Field sampling

Data were obtained from gill net surveys conducted by the 
Texas Parks and Wildlife Department long-term fishery-
independent monitoring program that was established in 
1975 and is ongoing. Beginning in 1982, 45 gill nets were 
set in each bay system in each 10-week spring (April–June) 
and fall (September–November) season. Sample sizes 
were variable before 1982. Sampling consists of mono-
filament gill nets (183 m long; 1.2 m deep with 45.7 m 
sections of 7.6, 10.2, 12.7, and 15.2 stretched mesh tied 
together in ascending order) set overnight (mean soak 
time ± SD = 13.7 ± 1.4 h), perpendicular to the shoreline 
with the 7.6 cm stretched mesh on the shoreward end, from 
randomly selected locations. All organisms caught were 
identified to the lowest taxonomic level (typically species), 

counted, and measured [total length (from the tip of the 
snout to the tip of the tail fully extended; TL) in mm]. Date, 
location, water depth (m), salinity (psu), water temperature 
(°C), and dissolved oxygen (mg L−1) were recorded for 
each sample and used to estimate environmental conditions 
while nets soaked. Environmental conditions may have 
changed overnight, but were only recorded at deployment 
and retrieval; thus, the sampling regime did not enable us 
to test how changes in environmental conditions during 
sampling affected shark captures and co-occurrence. The 
average environmental conditions of each sampling event 
at deployment and retrieval were used for analyses.

Species caught in gill nets were not exclusively sharks 
(see e.g., McEachron et al. 1998; Matich et al. 2016), and 
some teleosts may provide food for sharks and/or attract 
sharks to gill nets during deployments (Cortés 1997). 
To assess the effects of teleost abundance on shark co-
occurrence and concentrations, the catch per unit effort 
(CPUE) values of teleost species most abundant in gill 
net surveys, and known to be consumed by blacktip 
sharks and bull sharks, were pooled and quantified to 
estimate food availability (i.e., the CPUE values of the 
seven “bait” species were combined). Species included 
in analyses were Atlantic croaker (Micropogonias undu-
latus), finescale menhaden (Brevoortia gunteri), gizzard 
shad (Dorosoma cepedianum), Gulf menhaden (Brevoor-
tia patronus), ladyfish (Elops saurus), spot (Leiostomus 
xanthurus), and striped mullet (Mugil cephalus) (Snelson 
and Williams 1981; Snelson et al. 1984; Cliff and Dudley 
1991; Castro 1996; Bethea et al. 2004; Barry et al. 2008; 
Tavares 2008; Bornatowski et al. 2014; Tillett et al. 2014; 
Plumlee and Wells 2016).

Fig. 1  Location of the five 
major bay systems along the 
coast of Texas where sharks 
were sampled
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Data analysis

Using gill net data, the presence and absence of black-
tip sharks and bull sharks, the co-occurrence of blacktip 
sharks and bull sharks, the co-occurrence of conspecifics, 
and species-specific concentrations (i.e., individually for 
each species) were quantified. Co-occurrence is an event 
in which at least two sharks were captured from different 
species (i.e., at least one bull shark and at least one black-
tip shark—interspecific co-occurrence) or the same spe-
cies (i.e., at least two bull sharks or at least two blacktip 
sharks—intraspecific co-occurrence). Concentration is 
defined as the number of sharks captured during a single 
event when sharks were caught (Maunder and Punt 2004) 
and used to quantify intraspecific co-occurrence as a con-
tinuous variable. Gill nets that did not result in the cap-
ture of at least one blacktip shark or at least one bull shark 
were not included in the analyses (Maunder and Punt 2004; 
Fletcher et al. 2005; Serafy et al. 2007). Absence data (i.e., 
when sharks were not captured) was not included to avoid 
overlapping with the findings of Froeschke et al. (2010b), 
who investigated the impacts of environmental conditions 
on catch rates of these species in Texas. However, findings 
are presented within the context of Froeschke et al.’s results 
to broaden the scope of our study.

Forward, stepwise logistic regression (i.e., factors were 
added sequentially and kept if significant at α = 0.05) was 
used to quantify the effects of extrinsic and intrinsic factors 
on the likelihood of capturing at least one blacktip shark 
and at least one bull shark (i.e., interspecific co-occur-
rence). Predictor variables included (as extrinsic factors) 
bay system, decade (1970s, 1980s, 1990s, 2000s, 2010s), 
season (spring and fall), mean water temperature, mean 
salinity, mean dissolved oxygen, mean deepest water depth 
sampled by gill nets, and prey CPUE. Intrinsic factors in 
analyses included mean shark TL and shark TL range. Only 
significant interactions and main effects at α = 0.05 were 
included in the models. A post hoc Mann–Whitney test was 
used to quantify differences among parameters for signifi-
cant factors and interactions. Results were used to elucidate 
the factors leading to interspecific co-occurrence, which 
is defined as a sampling event during which at least one 
blacktip shark and at least one bull shark were captured. 
An identical analytical framework with post hoc Mann–
Whitney tests was used to identify the factors leading to 
intraspecific co-occurrence (i.e., when more than one indi-
vidual of the same species was captured during a sampling 
event—presence/absence).

Sharks of the same or different species may have entered 
gill nets at different times, and thus data may indicate the 
capture of sharks that would otherwise not exhibit intra- or 
interspecific co-occurrence. The sampling scheme did not 
enable us to test the assumption that sharks captured in the 

same gill net were captured at the same time. However, the 
small spatial coverage of the gill nets (183 m long) relative 
to the spatial coverage of bay systems (ca. 500–1500 km2) 
should limit interpretation bias of sharks co-occurring that 
may have entered habitats sampled by nets, hours apart.

Forward stepwise general linear models (GLMs) were 
used to investigate the effects of extrinsic and intrinsic fac-
tors (those used for logistic regression) affecting shark con-
centrations when more than one individual was captured, 
independently for each species. A post hoc Tukey’s test was 
used to quantify differences among parameters for signifi-
cant factors and interactions. Pearson’s Chi-square test was 
used to determine the independence of data, normal prob-
ability plots were used to test for normal distributions of 
the residuals, and plots of residuals versus predicted values 
were used to test for variance homogeneity of the models 
and factors. GLMs were also used with post hoc Tukey’s 
tests to investigate the spatial and temporal differences in 
blacktip and bull shark size structure (i.e., total lengths and 
length ranges). Data were appropriately transformed to 
meet assumptions of GLMs, including log transformation 
of blacktip and bull shark concentrations, and square root 
transformation of blacktip and bull shark size ranges. All 
analyses were conducted in IBM SPSS 22.

Results

From 1975 to 2014, 20,540 gill nets were deployed in Gal-
veston Bay, Matagorda Bay, San Antonio Bay, Aransas 
Bay, and Corpus Christi Bay, during which 2912 black-
tips were captured during 993 sampling events and 7841 
bull sharks were captured during 3331 sampling events 
(Table 1). Blacktip sharks ranged from 39 to 210 cm TL, 
and bull sharks ranged from 56 to 211 cm TL, with 98% of 
sharks of both species <150 cm TL.

Co-occurrence of blacktip sharks and bull sharks (i.e., 
interspecific co-occurrence) varied spatially and tem-
porally (Fig. 2). Interspecific co-occurrence was high-
est in Matagorda, San Antonio, and Corpus Christi bays 
(mean ± SE = 8.2% ± 0.7, 8.1% ± 0.8, and 9.1% ± 1.5 
of capture events, respectively; χ2

1,4042 = 10.08, p < 0.01; 
Fig. 2a). Interspecific co-occurrence of blacktip sharks and 
bull sharks significantly increased across decades, with 
the highest frequency of interspecific co-occurrence in 
the 2010s (12.2% ± 1.1 of capture events; χ2

1,4042 = 6.13 , 
p = 0.01; Fig. 2b). Interspecific co-occurrence was also 
higher in the fall (September–November; 8.9% ± 0.7) 
than the spring (April–June; 5.3% ± 0.5; χ2

1,4042 = 3.97, 
p = 0.046).

Extrinsic and intrinsic factors significantly affected 
the likelihood of interspecific co-occurrence (Table 2; 
ESM Table 1). Blacktip sharks and bull sharks were 
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caught together at increased salinities (28.3 ± 0.3 psu, 
χ
2
1,4042 = 67.46, p < 0.01) and deeper depths 

(1.30 ± 0.03 m, χ2
1,4042 = 11.47, p < 0.01), compared 

to homospecific events (i.e., when only one species 
was caught; 21.6 ± 0.2 psu and 1.17 ± 0.01 m, respec-
tively; Fig. 3a, b). Bull shark size also varied between 
homospecific and heterospecific capture events. Inter-
specific co-occurrence was more frequent when bull 
sharks were larger (110.7 ± 1.7 vs. 102.6 ± 0.3 cm 
TL, χ2

1,4042 = 6.86 , p < 0.01), and the size range of bull 
sharks was greater (23.5 ± 1.2 vs. 18.3 ± 0.2 cm TL; 
χ
2
1,4042 = 5.60, p = 0.02; Fig. 3c, d). There was a mod-

erately significant interaction among bay system and 
bull shark size range on the likelihood of capturing both 
blacktip and bull sharks during an event (χ2

1,4042 = 4.19 , 
p = 0.04). Bull sharks exhibited significantly wider 
ranges of total length in Matagorda Bay and San Antonio 
Bay when both shark species were caught (27.2 ± 3.2, 
and 25.1 ± 3.2 cm TL, respectively) and significantly 

wider total length ranges in Aransas Bay when only bull 
sharks were caught (17.2 ± 0.9 cm TL; ESM Fig. 1).

Capture events with more than one individual of a spe-
cies (intraspecific co-occurrence), also varied spatially 
and temporally (Fig. 4). The proportion of capture events 
with more than one blacktip shark was lowest in Aransas 
Bay (22.7% ± 6.4; χ2

1,993 = 6.06, p = 0.01), and the pro-
portion of capture events with more than one bull shark 
was highest in Matagorda Bay (57.5% ± 1.5) and low-
est in Corpus Christi Bay (32.6% ± 3.2; χ2

1,3331 = 11.61, 
p < 0.01; Fig. 4a). The proportion of capture events with 
more than one individual was significantly higher during 
the fall than the spring for blacktip sharks (χ2

1,993 = 8.68, 
p < 0.01) and bull sharks (χ2

1,3331 = 7.81, p < 0.01; Fig. 4b). 
Intraspecific co-occurrence did not vary across decades 
for blacktip sharks (χ2

1,993 = 0.37, p = 0.54) or bull sharks 
(χ2

1,3331 = 0.52, p = 0.47).
Solitary blacktip sharks and bull sharks were caught 

in significantly different environmental conditions 

Table 1  Gill net deployments, number of sharks caught, size range of sharks caught (in cm TL), average salinity (±SD in psu), average water 
temperature (±SD in °C), and average dissolved oxygen content (±SD in mg L−1) across decades within each bay system

Bay Decade Gill nets Blacktip sharks Bull sharks Salinity Temperature Dissolved oxygen

N Size range N Size range

Galveston 1970s 221 26 53–130 33 66–166 16.1 (7.3) 18.8 (7.2) 10.4 (2.5)

1980s 849 137 45–129 83 73–151 17.7 (7.9) 25.1 (4.1) 8.6 (2.8)

1990s 900 116 51–100 266 75–149 16.3 (8.9) 25.4 (4.0) 7.5 (1.5)

2000s 900 77 49–126 390 58–163 16.7 (8.5) 26.1 (3.6) 7.5 (1.4)

2010s 450 87 46–115 444 56–179 22.3 (7.8) 25.8 (3.8) 7.9 (1.6)

Matagorda 1970s 288 21 81–128 145 74–169 15.9 (6.4) 19.9 (7.2) 10.0 (1.9)

1980s 1242 441 40–145 885 66–150 20.7 (8.2) 24.9 (4.7) 8.5 (1.6)

1990s 1300 148 44–159 604 56–158 18.6 (9.1) 25.8 (4.2) 7.5 (1.7)

2000s 1300 357 48–182 977 57–178 21.1 (8.8) 26.6 (3.8) 7.1 (1.4)

2010s 650 434 39–210 424 61–201 28.0 (7.4) 26.2 (3.9) 7.5 (1.3)

San Antonio 1970s 175 4 81–147 116 74–152 15.2 (10.6) 20.6 (6.8) 8.9 (2.2)

1980s 849 8 58–164 558 62–185 21.1 (10.2) 25.5 (4.0) 7.7 (2.5)

1990s 900 179 52–168 648 65–175 18.1 (10.7) 25.9 (3.9) 8.3 (1.7)

2000s 900 163 49–179 604 57–169 18.7 (11.7) 26.7 (3.5) 7.9 (1.6)

2010s 450 218 45–181 301 59–211 24.6 (9.4) 26.3 (3.7) 7.7 (1.6)

Aransas 1970s 181 1 56 48 67–136 13.2 (7.2) 20.2 (6.9) 10.1 (2.2)

1980s 849 27 56–86 275 71–146 20.4 (9.1) 25.4 (4.1) 9.0 (2.2)

1990s 900 7 56–91 171 60–147 18.0 (9.2) 26.2 (3.9) 8.2 (2.1)

2000s 900 7 74–167 357 57–169 18.2 (10.1) 26.9 (3.5) 7.6 (1.7)

2010s 450 25 72–165 168 66–154 26.6 (8.9) 26.6 (3.6) 7.9 (1.4)

Corpus Christi 1970s 169 10 57–81 4 76–147 25.0 (7.1) 21.0 (6.6) 9.4 (2.0)

1980s 849 126 40–177 32 65–126 30.6 (6.9) 25.3 (3.9) 8.1 (1.8)

1990s 900 75 49–146 105 57–136 28.5 (6.7) 26.2 (3.8) 7.8 (1.8)

2000s 900 163 46–107 98 60–174 28.3 (7.7) 26.9 (3.3) 7.1 (1.5)

2010s 450 55 43–150 105 74–135 33.4 (5.7) 26.6 (3.2) 7.2 (1.2)
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than capture events that resulted in more than one 
individual (Table 2; ESM Tables 2, 3). Individual 
blacktip sharks were caught at cooler temperatures 
(27.2 ± 0.1 °C, χ2

1,993 = 11.54, p < 0.01) and shal-
lower depths (1.3 ± 0.02 m, χ2

1,993 = 9.20, p < 0.01) 
than blacktip sharks caught with at least one conspe-
cific (27.5 ± 0.1 °C, 1.4 ± 0.03 m; Fig. 5a, b). Indi-
vidual bull sharks were caught in cooler water tempera-
tures (27.6 ± 0.1 °C, χ2

1,3331 = 39.98, p < 0.01), higher 

salinities (21.6 ± 0.2 psu, χ2
1,3331 = 17.44, p < 0.01), and 

water with less dissolved oxygen (7.5 ± 0.04 mg L−1, 
χ
2
1,3331 = 4.96, p = 0.03) than bull sharks caught with 

at least one conspecific (28.1 ± 0.1 °C, 20.1 ± 0.2 psu, 
7.6 ± 0.04 mg L−1; Fig. 5c–e). The interaction between 

water temperature and season had a significant effect on 
the likelihood of capturing more than one blacktip shark 
(χ2

1,993 = 7.49, p < 0.01)—individual blacktip sharks were 
caught in cooler waters than multiple blacktip sharks dur-
ing the spring (27.4 and 28.3 °C, respectively), but there 
was no difference in capture temperatures of individual 
blacktip sharks and blacktip shark groups during the fall 
(26.8 and 26.8 °C, respectively).

Blacktip shark and bull shark concentrations (i.e., 
the number of conspecifics caught together) also varied 
in space and time (Table 2; Fig. 6; ESM Tables 4, 5). 
When more than one blacktip shark was caught, concen-
trations of individuals were highest in Matagorda Bay 
(6.1 ± 0.5 individuals per event) and lowest in Aran-
sas Bay (3.1 ± 0.3 individuals per event; F4,452 = 3.06, 
p = 0.02), while bull shark concentrations were low-
est in Corpus Christi Bay (2.9 ± 0.2 individuals per 
event; F4,1633 = 2.39, p < 0.05; Fig. 6a, c). Blacktip 
sharks exhibited no decadal changes in concentration 
(F4,453 = 1.24, p = 0.29); however, bull sharks exhibited 
a 26% decrease in concentration across decades through 
the 2000s, with no difference between the 2000s and 
2010s (F4,1633 = 2.59, p = 0.04; Fig. 6b, d). Decadal dif-
ferences in bull shark concentrations also varied across 
bay systems (F16,1633 = 2.39, p < 0.01). There was no 
significant temporal shift in bull shark concentrations in 
Aransas and Corpus Christi bays. Bull shark concentra-
tions fluctuated temporally in Galveston Bay, with sig-
nificantly lower concentrations in the 1980s (3.3 ± 0.4 
individuals per event) and the 2000s (3.3 ± 0.3 individu-
als per event). There was a decrease in bull shark con-
centrations in San Antonio Bay after the 1970s, and there 
was a decadal decrease in bull shark concentrations in 
Matagorda Bay during the study period (ESM Fig. 2).

Shark concentrations were also influenced by shark 
size. Both blacktip and bull shark concentrations 
decreased as mean shark size increased (F1,430 = 17.34, 
p < 0.01, and F1,1588 = 16.00, p < 0.01, respec-
tively; Fig. 7a, c). Blacktip and bull shark concentra-
tions increased as the range in total lengths increased 

Fig. 2  The frequency of interspecific co-occurrence varied both spa-
tially (a) and temporally (b). Bars indicate SE, and bars with different 
letters indicate significant differences between bay systems or dec-
ades based on Mann–Whitney post hoc test

Table 2  Final logistic regression and general linear models for (1) 
blacktip shark and bull shark co-occurrence, (2) blacktip shark con-
specific co-occurrence, (3) bull shark conspecific co-occurrence, 
(4) blacktip shark concentrations, and (5) bull shark concentrations, 

where a bay system, b decade, c season, d salinity, e water temper-
ature, f dissolved oxygen, g depth, h blacktip shark total length, i 
blacktip shark total length range, j bull shark total length and k bull 
shark total length range

Model Interaction Final model Model df χ2 F p

(1) Species co-occurrence Interspecific Ylmnoruv = μ + al + bm + cn + do + gr + ju + kv + (ak)lv + ε

lmnoruv

17 176.0 – <0.01

(2) Blacktip shark co-occurrence Intraspecific Ylnpr = μ + al + cn + ep + gr + (ce)np + εlnpr 8 30.70 – <0.01

(3) Bull shark co-occurrence Intraspecific Ylnopq = μ + al + cn + do + ep + fq + (ac)ln + εlnopq 14 134.9 – <0.01

(4) Blacktip shark concentration Intraspecific Yl = μ + al + εl 4 – 3.06 0.02

(5) Bull shark concentration Intraspecific Ylm = μ + al + bm + εlm 24 – 3.49 <0.01



Mar Biol  (2017) 164:141  

1 3

Page 7 of 16  141 

among individuals captured during the same event 
(F1,430 = 15.61, p < 0.01, and F1,1588 = 421.1, p < 0.01, 
respectively; Fig. 7b, d). Teleost CPUE did not affect 
shark co-occurrence, the likelihood of capturing more 
than one individual of either species, or shark concentra-
tions (ESM Tables 1, 3–5).

Size structure among blacktip and bull sharks var-
ied spatially and temporally (Fig. 8). Among cap-
tured sharks, mean TL was highest in San Antonio Bay 

(mean ± SE = 104.3 ± 2.2 cm TL) and smallest in 
Galveston Bay (76.1 ± 1.4 cm TL) for blacktip sharks 
(F4,445 = 7.33, p < 0.01), with significant but small spatial 
differences among bull sharks (F4,1633 = 6.16, p < 0.01; 
Fig. 8a). The size range of sharks captured also varied spa-
tially for blacktip sharks and bull sharks (F4,445 = 12.61, 
p < 0.01, F4,1633 = 5.99, p < 0.01, respectively). The largest 
size ranges among blacktip sharks was in Matagorda Bay 
(28.8 ± 2.2 cm TL) and San Antonio Bay (27.1 ± 2.7 cm 

Fig. 3  Salinity (a), water depth 
(b), bull shark total length (c), 
and bull shark total length range 
among individuals captured 
during an event (d) were 
significantly different between 
capture events with one species 
and capture events with both 
species. Bars are SE

Fig. 4  The proportion of events 
when more than one blacktip 
shark or more than one bull 
shark were capture varied 
spatially (a) and seasonally (b). 
Bars indicate SE, and bars with 
different letters in a indicate 
significant differences between 
bay systems
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TL), and the smallest size ranges among bull sharks was 
in Corpus Christi Bay (13.9 ± 2.0 cm TL) (Fig. 8b). 
Blacktip shark sizes also varied across decades, with sig-
nificantly smaller individuals captured in the 1980s and 
1990s (77.3 ± 1.4, and 74.9 ± 1.4 cm TL, respectively; 
F4,445 = 14.68, p < 0.01). There was no decadal change 
in bull shark mean total lengths (Fig. 8c). The mean range 
of blacktip shark total lengths among individuals captured 
during the same event significantly increased in the 2000s 
and 2010s (22.1 ± 2.2, and 34 ± 2.7 cm TL, respectively, 
F4,445 = 14.83, p < 0.01), with a small but significant 

increase in mean range of bull shark total length among 
individuals captured during the same event through time 
(F4,1633 = 2.91, p = 0.02; Fig. 8d).

Discussion

Environmental change and anthropogenic effects continue 
to impact many marine ecosystems (Jackson et al. 2001; 
Yang and Rudolf 2010; Doney et al. 2012), and the detri-
mental effects attributed to the extensive overlap between 

Fig. 5  Variability in water tem-
perature (a) and depth (b) lead 
to significant differences in the 
likelihood of capturing an indi-
vidual blacktip shark or more 
than one blacktip shark; and 
variability in water temperature 
(c), salinity (d), and dissolved 
oxygen (e) lead to significant 
differences in the likelihood 
of capturing an individual bull 
shark or more than one bull 
shark. Bars indicate SE
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humans and sharks are predicted to have wide ranging 
implications, leading to the loss of ecological role(s) in 
some contexts (Heithaus et al. 2008; Estes et al. 2011; Rip-
ple et al. 2014), and niche filling in others (Kitchell et al. 
2002; Owen-Smith and Mills 2008). However, gaining an 
understanding of species interactions is needed, before 
questions concerning shifts in niche widths and the loss of 
ecological roles can be investigated. Our findings suggest 
that interspecific co-occurrence of blacktip sharks and bull 
sharks has significantly increased over the last 40 years, and 
changes in environmental conditions may be responsible.

Spatiotemporal variability in interspecific 
co‑occurrence

Interspecific co-occurrence of blacktip sharks and bull 
sharks varied spatially across the study area. Sampling in 
Matagorda Bay, San Antonio Bay, and Corpus Christi Bay 
led to the highest frequency of events during which both 
species were captured, and habitat quality within at least 
some of these bay systems may promote spatial overlap 
between blacktip sharks and bull sharks. Froeschke et al. 
(2010a) suggested that Matagorda Bay and San Antonio 

Bay each provides important nursery habitat for juve-
nile bull sharks, potentially because of food availability, 
predator refuge, and/or salinity regimes. Other studies in 
the Gulf of Mexico also suggest that these factors play an 
important role in shaping bull shark distributions (Simpfen-
dorfer et al. 2005; Wiley and Simpfendorfer 2007; Heupel 
and Simpfendorfer 2008; Ortega et al. 2009; Froeschke 
et al. 2010b; Heupel et al. 2010; Drymon et al. 2014; Mat-
ich and Heithaus 2015). During the study period, most (ca. 
98%) sharks caught among both species were juveniles 
based on total length (Branstetter and Stiles 1987; Bare-
more and Passerotti 2013; Natanson et al. 2014), support-
ing this hypothesis proposed by Froeschke et al. (2010a). 
Middle and lower bay systems along the coast of Texas also 
tend to have moderate–high salinities conducive for black-
tip shark habitation (Steiner et al. 2007; Froeschke et al. 
2010b; Bethea et al. 2015). Thus, significantly higher inter-
specific co-occurrence and spatial overlap between blacktip 
sharks and bull sharks in these bay systems was not unex-
pected when compared to Galveston Bay and Aransas Bay.

However, habitat use among bull sharks and black-
tip sharks in coastal ecosystems is not uniform within 
and across estuaries (e.g., Heupel et al. 2004; Steiner and 

Fig. 6  Blacktip shark (a, b) and bull shark (c, d) concentrations varied spatially (a, c) and temporally (b, d). Bars indicate SE, and bars with dif-
ferent letters indicate significant differences between bay systems or decades based on Tukey’s post hoc test
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Michel 2007; Heupel and Simpfendorfer 2008; Froeschke 
et al. 2010b), which provides insight into the contexts 
under which these species are more likely to overlap spa-
tially. Juvenile bull sharks use brackish habitats in estuaries 
and rivers, because they provide refuge from large preda-
tory sharks, as well as release from competitors in marine 
food webs (e.g., Curtis et al. 2011; Heupel and Simpfen-
dorfer 2011; Werry et al. 2011). In contrast, physiologi-
cal restrictions are predicted to limit the use of brackish 
waters by blacktip sharks (Compagno 1984), despite 
apparent preferences for moderate salinities in some con-
texts (Froeschke et al. 2010b; Bethea et al. 2015). Such 
differences in the physiological ecologies of these spe-
cies suggest that co-occurrence is most likely to occur in 
more saline waters, and our results support this hypoth-
esis. Sampling events that led to the capture of both bull 
sharks and blacktip sharks occurred in significantly higher 
salinities (28.3 ± 0.28 psu SE) than sampling events in 
which only one species was captured (21.6 ± 0.15 psu 
SE). However, ca. 20% of these single species capture 
events occurred among blacktip sharks across a range of 

salinities (0.0–40.3 psu), suggesting that blacktip sharks 
are not completely restricted from entering low salinity 
waters and using habitats in traditional bull shark nurseries. 
Interactions among blacktip shark and bull sharks in brack-
ish waters may lead to an increase in competition between 
these two species, and increasing salinities in brack-
ish waters could promote such niche width expansion by 
blacktip sharks (Compagno 1984; Heithaus 2007; Steiner 
and Michel 2007), while constricting low–moderate salin-
ity habitats used by bull sharks as nurseries (e.g., Norden 
1966; Heuter and Tyminski 2007; Werry et al. 2011; Curtis 
et al. 2013; Werry and Clua 2013; Drymon et al. 2014).

Temporal changes in the co-occurrence of blacktip 
sharks and bull sharks provide support for the hypoth-
esis that the higher co-occurrence of blacktip sharks and 
bull sharks is due to changes in environmental conditions. 
Texas bays and estuaries have changed over recent history 
due to adjustments in water management. Along the coast 
of Texas, estuaries and bays are fed with freshwater from 
numerous rivers, which humans also rely upon for agricul-
tural, industrial, and urban use (e.g., Musick et al. 1990; 

Fig. 7  Blacktip shark (a, b) and 
bull shark (c, d) concentrations 
varied in response to shark total 
lengths (a, c) and the range of 
total lengths among sharks cap-
tured during an event (b, d)
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Kim et al. 2014). Demand for freshwater resources has 
steadily increased with human population growth across 
Texas, which in turn may be reducing freshwater inflow 
into some coastal regions (Wurbs 2014; Venkataraman et al. 
2016). Reduced freshwater flow leads to increased salini-
ties, at least among bays where salinity regimes are highly 
dependent on freshwater inflow (Tolan 2007; Palmer et al. 
2011), and increasing salinities would predictably lead to 
increased spatial overlap and co-occurrence of bull sharks 
and blacktip sharks based on correlations between salinity 
and interspecific co-occurrence (NOAA 1998; Froeschke 
et al. 2010b). Thus, temporal changes in interspecific co-
occurrence could be driven by shifts in hydrology. Inter-
specific co-occurrence was also more frequent when bull 
sharks were larger, potentially due to ontogenetic shifts of 
larger individuals into more saline waters more suitable for 
blacktip sharks (Compagno 1984; Froeschke et al. 2010b; 
Bethea et al. 2015). However, our analytical framework 
was not designed to address such questions, and more 
specific investigations of annual patterns in precipitation, 

freshwater inflow, salinity regimes, and habitat use pat-
terns of blacktip sharks and bull sharks will provide greater 
insight into why interspecific co-occurrence has increased 
by an order of magnitude over the last 40 years.

Increased abundances of sharks within Texas bay sys-
tems may have also led to increased interspecific co-occur-
rence among blacktip sharks and bull sharks through time. 
Within ecological communities, interspecific interactions 
increase as the relative abundance of individuals within 
populations increases (Chase and Leibold 2003; Svan-
bäck and Bolnick 2007). Within Texas, the relative abun-
dance of bull sharks has increased over the last 40 years 
(Froeschke et al. 2013), and blacktip abundance has also 
increased in recent years (Bubley and Carlson 2012). Thus, 
growing blacktip and bull shark subpopulations in coastal 
bays would potentially lead to increased interspecific co-
occurrence through time. However, a large proportion of 
changes in bull shark abundances is attributed to signifi-
cant increases in bull sharks within Sabine Lake (Froe-
schke et al. 2013), which was not considered for this study 

Fig. 8  Mean shark total length (a, c) and mean range of shark total 
lengths among individuals captured during an event (b, d) varied spa-
tially (a, b) and temporally (c, d). Bars indicate SE, and bars with 

different letters indicate significant differences between bay systems 
or decades based on Tukey’s post hoc test
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because of the lack of blacktip sharks that use this ecosys-
tem, and Galveston Bay (Froeschke et al. 2013), which 
exhibited significantly lower interspecific co-occurrences 
than Matagorda Bay, San Antonio Bay, and Corpus Christi 
Bay. Data suggest that Matagorda Bay, San Antonio Bay, 
and Corpus Christi Bay have all supported relatively stable 
bull shark subpopulations for the last 30–40 years (Froe-
schke et al. 2013), suggesting that an increased abundance 
of at least bull sharks is unlikely to be the primary reason 
for changes in interspecific co-occurrence among blacktip 
sharks and bull sharks.

Potential implications of increasing interspecific 
co‑occurrence

Changes in bull shark concentrations, which can provide 
insight into grouping behavior (Maunder and Punt 2004), 
however, may improve our understanding concerning 
the implications of increased interspecific co-occurrence 
among bull sharks and blacktip sharks through time. In 
contrast to increased interspecific co-occurrence of blacktip 
sharks and bull shark through time, bull shark concentra-
tions (i.e., the number of conspecifics caught together dur-
ing a single event) significantly decreased through time by 
ca. 25%—fewer bull sharks were caught during individual 
sampling events from the 1970s to the 2000s and 2010s. 
Many shark species are considered solitary throughout 
most of their life histories (e.g., Motta and Wilga 2001; 
Papastamatiou and Lowe 2012), and thus capture events 
with few or individual sharks are not unexpected. While 
relative abundances describe the total number of sharks 
captured/found across space and time based on sampling 
effort (Maunder and Punt 2004), concentrations provide 
information on the number of sharks captured together, 
which may elucidate the contexts that lead to solitary and 
grouping behavior (Maunder and Punt 2004). Thus, relative 
abundances and concentrations provide complementary, but 
different information on distribution patterns, and temporal 
shifts in concentrations may indicate changes in intraspe-
cific interactions.

Some shark species form groups to improve feeding suc-
cess and potentially decrease risk of predation (e.g., Heu-
pel and Simpfendorfer 2005; Dudley and Cliff 2010; Pick-
ard et al. 2016), and elasmobranch groups are not always 
homospecific (e.g., Williams et al. 2010; Speed et al. 
2011; Brunnschweiler et al. 2014; de Leon et al. 2016). 
Indeed, some species regularly co-occur within particu-
lar habitats or under particular contexts (e.g., Vaudo and 
Heithaus 2011; Kajiura and Tellman 2016), and across 
the Texas coast, interspecific co-occurrence among black-
tip sharks and bull sharks has significantly increased over 
the last 40 years. Other studies have also found spatial or 
temporal variability in blacktip and bull shark interspecific 

co-occurrence, which has been related to habitat quality 
and environmental conditions (e.g., Castro 1993; de Silva 
et al. 2001; Steiner and Michel 2007; Fischer et al. 2009; 
Driggers et al. 2012; Bethea et al. 2015). Changes in inter-
specific co-occurrence within Texas is likely in response 
to changes in environmental conditions as previously dis-
cussed, and changes in interspecific interactions may have 
resulted in changes in bull shark behavior. If juvenile bull 
sharks rely on low–moderate salinity habitats as nurseries 
(Heuter and Tyminski 2007; Curtis et al. 2011; Werry et al. 
2011), and bay systems have increased in salinities (Wurbs 
2014; Venkataraman et al. 2016), bull sharks would pre-
dictably increase their use of riverine habitats in search of 
low salinity waters (Heupel and Simpfendorfer 2008; Cur-
tis et al. 2013; Werry et al. 2011; Drymon et al. 2014).

The sampling regime used for this study, however, does 
not monitor riverine habitats. Thus, if bull sharks increased 
their use of rivers during the study period, a decrease in 
bull shark abundance, and potentially concentrations, in 
bay systems would be expected across time due to a shift 
in bull shark habitat use. Yet, decreases in bull shark abun-
dances have not been observed (Froeschke et al. 2013). 
Thus, the hypothesis predicting upstream movements of 
bull sharks is not supported, and data are not available 
to test this hypothesis directly. Alternatively, bull sharks 
may have adjusted their habitat use within bay systems 
in response to increased interspecific co-occurrence and 
competition with blacktip sharks by decreasing spatial 
overlap and competition with conspecifics, which would 
lead to the observed decrease in bull shark concentrations, 
but not relative abundances. Ecological theory predicts 
that as resource availability decreases, which can be due 
to increased intra- and/or interspecific competition, niche 
partitioning increases, which can be facilitated through 
decreased spatial overlap with other species or conspecif-
ics (Pianka 1972, 1973). Bull sharks exhibit niche par-
titioning within populations based on shark size (e.g., 
Simpfendorfer et al. 2005; Werry et al. 2011), foraging 
preferences (e.g., Matich and Heithaus 2015), body con-
dition (e.g., Matich and Heithaus 2015), and individual 
specializations (e.g., Matich et al. 2011), highlighting the 
plasticity of their resource use patterns. Thus, shifts in 
bull shark concentrations may reflect changes in behav-
ior—reduced spatial overlap and intraspecific interactions 
may enable bull sharks to more suitably partition resources 
with conspecifics to account for increased competition and 
niche overlap with blacktip sharks (Pianka 1972, 1973). 
While speculative, shifts in the behavior of predators in 
response to intra- and interspecific competition are rela-
tively widespread (reviewed by Brown and Wilson 1956; 
Bolnick et al. 2003; Pfennig et al. 2010), and plasticity 
among sharks in coastal ecosystems is promising for their 
resilience in light of changing environmental conditions 
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and resource availability attributed to human impacts and 
climate change (Jackson et al. 2001; Yang and Rudolf 
2010; Doney et al. 2012; Romero-Lankao et al. 2014; 
Matich et al. 2017). Future studies quantifying the relative 
abundance of bull sharks in Texas rivers, and habitat con-
nectivity between rivers and bays through shark movement 
patterns will help further resolve the drivers and implica-
tions of the observed temporal trends.

Conclusion

Our findings suggest that interspecific co-occurrence 
among blacktip sharks and bull sharks is temporally vari-
able and correlated with salinity; however, our limited 
understanding of elasmobranch community dynamics 
along the coast of Texas currently poses challenges for 
understanding the implications of changes in spatial over-
lap among these species and interspecific interactions. 
We speculate that increasing co-occurrence with salin-
ity suggests that environmental changes within Texas 
bay systems are causing shifts in species distribution 
patterns, and such changes may be leading to increased 
interactions among blacktip sharks and bull sharks. How-
ever, reduced intraspecific co-occurrence among bull 
shark conspecifics may alleviate such changes. Gaining 
a more comprehensive understanding of resource use 
among sharks within Texas coastal ecosystems will help 
elucidate the importance of environmental and biological 
drivers shaping habitat use patterns and co-occurrence 
among shark species along the western Gulf Coast (e.g., 
Speed et al. 2010; Vaudo and Heithaus 2011; Plumlee and 
Wells 2016; Matich et al. 2017). As we strive to improve 
our understanding of the implications of shifts in salin-
ity regimes and community compositions, future studies 
should investigate how foraging behavior, life history, 
and behavioral plasticity in habitat use affect co-occur-
rence within and across species.
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