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Abstract

Shortfin Mako Isurus oxyrinchus are ecologically and econom-
ically important apex predators throughout the global oceans. The
eastern North Pacific Ocean contains several coastal nurseries for
this species, where juveniles can forage and grow until venturing
into offshore pelagic habitats, where seasonal migration and repro-
duction occurs. Opportunistically sampled vertebrae from both

male and female juvenile Shortfin Mako (65.5-134.4cm total
length, neonate to age 2) were sourced from two distinct nurseries
in the eastern North Pacific: the Southern California Bight
(n = 12), USA, and Bahia Sebastian Vizcaino (» = 11), Mexico.
Mineralized vertebral cartilage was analyzed to determine concen-
trations of selected elements (Li, Mg, Mn, Zn, Sr, Ba, standar-
dized to Ca) using laser ablation inductively coupled plasma mass
spectrometry, targeting growth bands at specific life stages,
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including postparturition at the birth band and the recent life his-
tory of the individual at the vertebral edge. The elemental varia-
tion exhibited by these individuals over ~1 month of life before
capture was explored by comparing recent vertebral concentra-
tions, with Zn:Ca, Sr:Ca, and Ba:Ca concentrations significantly
different between nurseries (Southern California Bight versus
Bahia Sebastian Vizcaino). Element variability through ontogeny
was detected, as Li:Ca, Mg:Ca, and Zn:Ca concentrations were
significantly different between individual past and recent vertebral
bands. These findings suggest that vertebral chemistry approaches
may enhance understanding of nursery habitat sources of migra-
tory sharks.

Elasmobranchs consist of many ecologically and eco-
nomically important species found across the world’s
oceans (Stevens 2009; Semba and Yokawa 2014). Com-
mercial, recreational, and artisanal fisheries target many
elasmobranch species for both sport and food (Musick
and Bonfil 2005). Some populations have reached a point
of overfishing due to a combination of exploitation rate
and life history attributes found in most k-selected spe-
cies (slow growing, late maturing, few offspring) (Cail-
liet 2015; Gallagher et al. 2017). Understanding the
population dynamics of elasmobranchs (habitat, diet,
movement, reproduction, etc.) and connectivity of popu-
lations over time and geographic regions allows regional
fishery managers to better understand local and neigh-
boring stock structure (Holts and Bedford 1993; Baum
et al. 2003). Through advancements in technology (i.e.,
biotelemetry, underwater videography, genetics, hard
structure analysis), there has been an increased under-
standing of many elasmobranch species (Sato 2013),
allowing for more robust marine management decisions
and regulatory policy.

Shortfin Mako Isurus oxyrinchus is a highly migratory
elasmobranch (Semba and Yokawa 2014) targeted in
recreational sport fisheries and incidentally captured in
longline fisheries throughout the globe. Landings of Short-
fin Mako support high economic value across fisheries,
especially in the eastern North Pacific Ocean (Abascal
et al. 2011). Concerns about recent population declines in
the Atlantic Ocean initiated investigation into protected
status (Sellheim 2020), demonstrating the potential risks of
overexploitation for other populations, such as those in
the Pacific Ocean. Currently, Shortfin Mako are listed as
vulnerable (biomass reductions between 30% and 50%) on
the International Union for Conservation of Nature Red
List in the Northern Pacific Ocean and listed as not overf-
ished and overfishing is not occurring by the International
Scientific Committee for Tuna and Tuna-like Species of
the North Pacific Ocean 2021 Plenary Report, although
those classifications come with much debate (Kai 2021).
Furthermore, Shortfin Mako are protected globally under
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Appendix II of the Convention on International Trade
and Endangered Species, aiming to protect global popula-
tions. While eastern North Pacific Ocean Shortfin Mako
populations are not currently facing the same pressures as
the North Atlantic Ocean population, connectivity of glo-
bal Shortfin Mako populations indicate potential future
population risk (Queiroz et al. 2019).

Like many elasmobranch species, adult Shortfin Mako
occupy a top trophic level in temperate and tropical mar-
ine ecosystems worldwide (Stevens 2009), utilizing coastal
waters such as the California coast as nursery habitats for
their offspring (Nasby-Lucas et al. 2019). As defined by
Heupel et al. (2007), elasmobranch nurseries are identified
by relatively high abundance of both neonates (newborns
less than a year old) and juveniles compared with sur-
rounding areas and long-term use of the selected area and
retention of immature sharks across years. Based on these
parameters, multiple elasmobranch nurseries have been
identified, especially in the eastern North Pacific Ocean
(Ofiate-Gonzalez et al. 2017; Tamburin et al. 2019).
Coastal nurseries provide juveniles protection from stres-
sors in the open ocean habitat, such as predators, while
simultaneously providing an abundance of potential prey
species (Castro 1993). High productivity in coastal nur-
series off of California, USA, and Baja California Penin-
sula, Mexico, are supported by coastal upwelling, driven
by offshore winds, bringing cold, nutrient-rich water to
the surface (Bograd et al. 2009).

The California coast contains at least two established
nurseries, the Southern California Bight (SCB), USA
(Hanan et al. 1993), and Bahia Sebastian Vizcaino (BSV),
Mexico (Tamburin et al. 2019), separated by ~500 km of
coastline. According to Mollett et al. (2000), newborn
Shortfin Mako are birthed at approximately 70 cm TL, on
average, in late winter to mid-spring in the Northern
Hemisphere. Juvenile Shortfin Mako prefer shallower
nearshore waters (Nosal et al. 2019) and venture farther
from the pupping grounds into deeper waters as they
mature (Sepulveda et al. 2004; Francis et al. 2019). A pre-
vious satellite study investigating the habitat and migra-
tion of subadult Shortfin Mako (105-285cm FL) along
the southern California coast for approximately 1year
suggests that movement increases with ontogeny (Nasby-
Lucas et al. 2019), with individuals displaying high resi-
dency to their respective habitat during different seasons
throughout the juvenile life stage. A long-term study con-
ducted by scientific observers between 2006 and 2013 had
similar findings to Nasby-Lucas et al. (2019), reporting
young-of-year (age-0) Shortfin Mako found in the SCB,
BSV, and other coastal regions along the California coast-
line forming clusters or “hot spots” (Carredn-Zapiain
et al. 2018). Carredn-Zapiain et al. (2018) observed juve-
niles displaying northern movements in the last quarter of
the year as sea surface temperature increases and prey
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distributions shift. While the findings of Carreén-Zapiain
et al. (2018) do suggest potential migrations by juveniles,
research using telemetry has yet to support their findings.
Nasby-Lucas et al. (2019) additionally reported that hori-
zontal movement for juvenile Shortfin Mako (<165cm
FL) averaged 23.2 +17.4km/d (mean + SE), with a max
of 109.2km/d. This is similar to Sepulveda et al. (2004),
who also investigated the rate of movement for juvenile
Shortfin Mako (80-145cm FL), finding that their average
swimming rate was 2.3 km/h, with a maximum movement
of 145km over a 45.4-h period (~ 55km/d with a max of
~77 km/d). As stated, the SCB and BSV are separated by
approximately 500 km, meaning that direct movement
between nurseries could occur; however, the findings of
Nasby-Lucas et al. (2019) suggest that large-scale move-
ments between regions as separated as SCB and BSV are
unlikely for juvenile Shortfin Mako of this size-class. Fish-
ery managers interpret movement data of Shortfin Mako,
and other fishery target species (other elasmobranchs,
tunas [family Scombridae], billfish [families Istiophoridae
and Xiphiidae], teleosts, etc.), to determine factors such as
species-specific population boundaries, essential habitats,
and spatiotemporal interactions between fisheries along
with stakeholder jurisdictions (in this case, both the Uni-
ted States and Mexico) (Hueter et al. 2005; Vaudo
et al. 2017).

Shortfin Mako, like all elasmobranchs, have skeletal
systems composed entirely of cartilage, some of which is
calcified with apatite (Dean et al. 2015). The vertebral col-
umns of most elasmobranchs are composed of calcified
cartilage that grows radially through time (Claeson and
Dean 2011). Unlike bone structures, cartilaginous struc-
tures do not resorb over time, leaving an unaltered record
of primary biomineralization throughout life (Dean
et al. 2015). The use of laser ablation inductively coupled
mass spectrometry allows elemental concentrations to be
quantified in the direction of radial (outward) growth, pro-
viding continuous chemical time series throughout onto-
geny or average element concentrations at discrete life
stages using spot analyses. Trace element concentrations
found in vertebrae show positive correlations associated to
both environmental and physiological processes, in which
dissolved ions are transported into blood vessels through
the gill membrane or diet, which are then incorporated
into hard structures during formation (Mathews and
Fisher 2009). For example, the uptake of alkaline earth
metals (Mg, Sr, Ba) from seawater are incorporated into
the hydroxyapatite in elasmobranch vertebral cartilage (as
a Ca substitute) or deposited in interstitial mineral spaces
(McMillan et al. 2017b). Other trace metals (Li, Zn, Cu,
Pb) in fish blood can be assimilated into the protein
matrices or crystalized biominerals as growth occurs (Stur-
rock et al. 2013; McMillan et al. 2017b). Characterizing
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vertebral chemistry can further the understanding of the
stock structure, nursery habitats, movement patterns, and
growth during different stages of life (McMillan et al.
2017a; Mohan et al. 2018; TinHan et al. 2020; Livernois
et al. 2021).

In tag-recaptured Shortfin Mako sampled from the
SCB, correlations between elemental variation in vertebrae
and both oceanic processes (such as upwelling and Ba)
and internal physiology (band pairs and Mn oscillations)
have been detected (Mohan et al. 2018). This study aimed
to further describe the vertebral chemistry of Shortfin
Mako in the eastern North Pacific Ocean with the objec-
tives to (1) determine if elemental concentrations in the
recent vertebral band (reflecting the month of life prior to
capture) vary in juvenile Shortfin Mako between two
known nurseries in order to describe residence in nursery
of origin and (2) assess how ontogeny of newborn and
juvenile (age 0-2) Shortfin Mako may influence elemental
variation between the past and recent growth band of the
vertebrae.

METHODS

Collection regions.— Juvenile Shortfin Mako were
opportunistically sampled at two distinct sampling regions
in the eastern North Pacific Ocean: the SCB, USA, during
the fall of 2017 and BSV, Mexico, during the fall of 2016
(Figure 1; Table 1). In the SCB, juvenile Shortfin Mako
were caught by recreational fishermen sportfishing within
~160km of San Diego, California, with hook-and-line
gear. In BSV, juvenile Shortfin Mako were caught by arti-
sanal fishermen using offshore longlines. For both regions,
all juvenile Shortfin Mako landings were not motivated by
this study, with samples provided by donations, and there-
fore were purely opportunistic.

The SCB is an open coastal embayment located off
southern California and the northern extent of Baja Cali-
fornia. This region spans from Point Conception (34°N)
to Cabo Colonet (31°N), with a maximum width of the
continental shelf of 300 km (Cartamil et al. 2010). This
ecosystem has shallow nearshore waters with a steep shelf.
This entire region is unique with its coastal topography,
seasonal currents from north and south, and eastern mar-
gin upwelling, which makes it one of the most productive
elasmobranch nurseries in the eastern North Pacific Ocean
(Cartamil et al. 2010).

The BSV is a large coastal bay located on the western
coastline of the Baja California Peninsula. This bay is pro-
tected from the open Pacific Ocean due to coastal topo-
graphy. The BSV is considered a highly productive
ecosystem due to regional upwelling caused by both off-
shore winds and its coastal geomorphology (Lluch-Belda
et al. 2003; Wingfield et al. 2011). The BSV also displays
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FIGURE 1. Collection map of the sampled juvenile Shortfin Mako for
this study. White squares represent sampling sites for the Southern
California Bight (SCB), and white triangles represent sampling sites from
Bahia Sebastian Vizcaino (BSV). See Table 1 for collection dates and
specimen metadata.

retentive circulation, retaining nutrients, which favors high
chlorophyll concentrations and attracts prey species
(Lluch-Belda et al. 2003; Wingfield et al. 2011). These fac-
tors create a highly productive ecosystem and a suitable
nursery for several elasmobranch species, including Short-
fin Mako.

While the SCB and BSV are similar juvenile shark nur-
series in the eastern North Pacific Ocean, they do contrast
in the structure of their respective Shortfin Mako fisheries.
The SCB is located in the jurisdiction of the United States
(Rogers-Bennett et al. 2001), while the BSV is regulated
by Mexico (Cartamil et al. 2011). The SCB Shortfin Mako
landings are primarily recreational for sport, rather than
commercial (Runcie et al. 2016), and landings are rela-
tively small and well studied compared with that of
recreational landings in other regions. In the BSV, Short-
fin Mako landings are mostly through the local artisanal
fishery, at smaller scales. Unlike in the SCB, BSV landings
are motivated as both a source of food and income for
local fishermen (Cartamil et al. 2011; Santana-Morales
et al. 2020). For both nurseries, Shortfin Mako catch is
primarily that of juveniles (Cartamil et al. 2011; Runcie
et al. 2016), hypothesized to be due to high residency of
juveniles in these nurseries compared with that of highly
migratory mature adults.
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Vertebrae preparation and analysis.— Air-dried verteb-
ral centra were sectioned in a frontal plane parallel to the
growth axis using a Buehler low-speed diamond-blade
saw. These sections were then mounted on glass petro-
graphic slides using thermoplastic cement (Crystalbond)
and viewed under a microscope for imaging using trans-
mitted light. The birth band position (indicated by a
change in the angle of the corpus calcareum; Semba
et al. 2009) was identified on digital images. All samples
were aged based on the findings of Wells et al. (2013),
which found that juvenile Shortfin Mako deposit two
band pairs per year. For some specimens, the edge of the
vertebra was the birth band, indicating that the birth band
occurred recently, and thus the laser only targeted the
edge, herein referred to as “recent” (Figure 2A). For other
specimens that displayed a birth band not on the vertebral
edge, two separate laser transects (hereafter, termed “past”
and “recent”), were obtained and analyzed (Figure 2B).
While we did see an expected correlation between esti-
mated age and TL, there was overlap between individuals
who displayed multiple growth bands to those who only
displayed a distinct recent band, when compared to TL.

Vertebral elemental concentrations were measured
using an Elemental Scientific New Wave Research 193nm
excimer laser coupled to an Agilent 7500ce inductively
coupled plasma mass spectrometer at the University of
Texas at Austin. Optimized laser parameters were used, as
determined from test ablations on representative speci-
mens, scanning at 5 pm/s using a 50 X 100 pm rectangular
slit, with the long axis parallel to growth increments, 40%
power, and 10 Hz repetition rate. A previous study that
calculated accretion rates for Shortfin Mako vertebrae
estimated that 100 um represent approximately 1 month
(McMillan et al. 2017b; Mohan et al. 2018). The laser
path was set to scan across the naturally curved growth
band at the edge for all samples and the birth band for
the subset that did not have the birth band on the edge to
ensure the same time frame in the shark’s life was tar-
geted. Analytes included Li, Mg, Mn, Cu, Zn, Sr, Ba, and
Ca. All unknown vertebrae scans were bracketed by
certified standards, including NIST 612, MACS-3, and
MAPS-4, which were analyzed in triplicate for 60 s. Time-
resolved intensities were then converted to concentration
(ppm) using Iolite Software (Paton et al. 2011), using “*Ca
as the internal standard assuming 35 wt% in hydroxyapa-
tite (Mohan et al. 2018). We express our results as molar
ratios, as it has become common practice in previous stu-
dies and allows results to be comparable to both previous
and future research (Mohan et al. 2018).

Data analysis.— Based on the limited sample size of the
data set, as well as a lack of normality, a nonparametric
statistical approach was better suited when comparing
nurseries (SCB and BSV). A Mann-Whitney rank-sum
test was used to compare the variation between sampling
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regions (SCB versus BSV nursery habitats) reflected in the
concentrations of each element during the most recent
month of life for each juvenile Shortfin Mako, referred to
as “recent” for vertebral edges. This assumes that sampled
juvenile Shortfin Mako resided in their respective nursery
for the period encompassed by the ablation (about 1
month), which is supported by satellite tagging available
to date (Nasby-Lucas et al. 2019). A paired ¢-test was used
to compare variations between recent and past vertebral
elemental concentrations to determine if there was distinct
variation in elemental uptake across ontogeny as Shortfin
Mako grow larger, under the same assumptions supported
by Nasby-Lucas et al. (2019), which support the idea that
residency of juvenile Shortfin Mako decreases through
ontogeny.

RESULTS

In the SCB, Shortfin Mako (n = 12) ranged in size from
65.5 to 117cm TL, while in BSV, Shortfin Mako (n = 11)
ranged from 73 to 1344cm TL. In total, samples were
composed of 9 females, 12 males, and 2 individuals of unde-
termined sex. All 23 samples displayed an edge band,
denoted as recent, of which 14 samples displayed only an
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edge band (Figure 2A), while 9 samples displayed both an
edge and birth band, denoted as past (Figure 2B). Samples
ranged in age estimates from neonate to age 2, with all indi-
viduals deemed a neonate (n = 4) only having the recent
band. Some age-0 (» = 10) samples had not displayed
growth postbirth that distinguished from the birth band and
therefore had the recent band at the vertebral edge. All ver-
tebrae, including neonates, display a distinct change in angle
and birth band, indicating that sufficient growth occurred in
the region of collection. The rest of the age-0 individuals
(n = 6), as well as all of those deemed age 1 (n = 2) and
age 2 (n = 1), displayed both a past and recent band
(Table 1). For samples that displayed both a past and
recent band, the average + SE distance between laser paths
on the vertebrae was ~2.1 + 1.5 mm.

Comparison between Nursery Regions

Based on Mann—Whitney rank-sum tests (Table 2), ele-
ment to Ca ratios of vertebral recent bands were signifi-
cantly different between sampling regions for Zn:Ca
(P = 0.01), Sr:Ca (P = 0.03), and Ba:Ca (P = 0.02)
(Table 2). Sharks sampled in the SCB showed higher med-
ian Zn:Ca (mediangcg = 80.92 ymol/mol, medianggy =
61.50 pmol/mol) and Ba:Ca (mediangcg = 7.34 pmol/mol,

TABLE 1. Metadata for individual Shortfin Mako collected in the Southern California Bight (SCB), USA, and Bahia Sebastian Vizcaino (BSV), Mex-
ico. Age estimations are based on visualized band pairs on the sampled vertebrae. Areas sampled describes which areas (P = past, P & R = past and
recent) were selected for laser ablation inductively coupled mass spectrometry analysis. Bold, italicized TLs are estimated using the

equation FL = 2.4054 x Alternate Length + 9.8035 (Preti et al. 2012).

ID Latitude Longitude Date Sex TL (cm) Vertebrae radius (mm) Age estimation Areas sampled
SCBO1 32.878 —117.214 Aug?25,2017 M 88.0 10.93 Neonate R
SCB02 33.150 -117.370 Oct 26,2017 M 80.0 11.49 Age 0 R
SCB03 32.380 —117.260 Aug 12, 2017 117.0 15.69 Age 1 P& R
SCB04 33.180 —117.480 Oct 26,2017 M 86.0 11.87 Age 0 R
SCB05 32.040 —118.148 Aug20,2017 M 70.3 9.57 Neonate R
SCB06 32.040 —118.148 Aug20,2017 M 97.7 12.84 Age 0 P &R
SCB07 32.220 —-118.280 Oct 3, 2017 70.0 9.40 Age 0 R
SCB08 32.040 -118.128 Aug5,2017 M 69.2 9.23 Age 0 R
SCB09 32.040 —-118.128 Aug?7,2017 M 77.1 10.08 Age 0 R
SCBI0 32.040 -118.128 Aug7,2017 M 73.6 9.85 Neonate R
SCBI1 32250 —117.192 Sep 9, 2017 F 71.2 9.32 Age 0 R
SCBI12 32.040 -118.128 Aug5,2017 F 65.5 8.03 Neonate R
BSV0O1 28.185 —114.399 Nov 7,2016 F 83.8 12.43 Age 0 P &R
BSV02 28.185 —-114.399 Nov 7,2016 F 106.7 15.28 Age 0 P &R
BSV03 28.185 —-114.399 Nov 7,2016 F 73.4 10.98 Age 0 R
BSV04 28.185 —114.399 Nov 7,206 M 1344 21.31 Age 2 P &R
BSV05 28.185 —114.399 Nov 7,2016 M 83.8 10.90 Age 0 R
BSV06 28.185 —114.399 Nov 7,2016 F 77.0 13.78 Age 0 P &R
BSV07 28.381 —-114.259 Nov 7,2016 F 98.0 13.21 Age 0 P& R
BSV0O8 28.249 —-114.099 Aug 16,2016 M 127.0 12.41 Age 0 R
BSV09 28.185 —114.399 Nov 7,2016 F 124.5 17.11 Age 1 P &R
BSV10 28.185 —114.399 Nov 5,2016 M 73.0 9.99 Age 0 R
BSVI1 28381 —-114.259 Augl,2016 F 91.0 14.13 Age 0 P &R
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FIGURE 2. Digital images of vertebrae representing targeted laser paths
and growth zones. For some samples, (A) only the birth band was
present (SCBI11), while for others, (B) both a birth band and an edge
growth band were present (BSV04). We denote all birth bands not
sampled on the vertebral edge as past. All growth bands sampled at the
edge of the vertebrae, either as a birth band or a separate growth band,
we denote as recent.

medianggy = 2.70 pmol/mol) versus showing a lower med-
ian Sr:Ca (mediangcg = 2.13 pmol/mol, medianggy = 2.26
pmol/mol) than those captured in BSV (Figure 3). There
was no significant difference between nurseries for Li:Ca,
Mg:Ca, and Mn:Ca (Table 2). A separate statistical analy-
sis excluding neonates (n = 4) was also conducted, which
displayed no observed variation to results for Li:Ca, Mg:

TABLE 2. Mann—Whitney rank-sum test results comparing edge chemis-
try between the two nursery regions (SCB [Southern California Bight]
and BSV [Bahia Sebastian Vizcaino]), with bold, italicized P-values indi-
cating significant differences.

Median
SCB BSV
Element n =12 n=11 Difference U P-value
Li:Ca 9.64 9.62 -0.02 63 0.88
Mg:Ca 26.62 25.52 -1.01 50 0.35
Mn:Ca 17.54 12.11 —-5.43 34 0.05
Zn:Ca 80.92 61.50 -19.42 109 0.01
Sr:Ca 2.13 2.26 0.13 29.5 0.03
Ba:Ca 7.34 2.70 —4.64 26 0.02

LAFRENIERE ET AL.

Ca, Mn:Ca, Zn:Ca, and Ba:Ca. Only Sr:Ca between
regions displayed change in significance (P-value changed
from 0.03 to 0.09), which we believe to be caused the lack
of power in a nonparametric analysis when a sample size
decreases (—33.3%).

Past versus Recent Comparison

Based on paired r-tests (Table 3) for nine individuals
(SCB: n = 2, BSV: n = 7), recent and past band
composition differed significantly for Li:Ca (P <0.01),
Mg:Ca (P<0.01), and Zn:Ca (P <0.01) (Table 3). The
Li:Ca (A -3.78 pmol/mol) ratios decreased, while Mg:Ca
(A+12.26 pmol/mol) and Zn:Ca (A +19.10 pmol/mol)
ratios increased from past to recent (Figure 4). Addition-
ally, there was no significant difference between past and
recent for the elemental ratios Mn:Ca, Sr:Ca, and Ba:Ca
(Table 3).

DISCUSSION

In this study examining juvenile Shortfin Mako verteb-
ral chemistry, element to Ca ratio variation occurred both
spatially between SCB and BSV nursery regions (Zn:Ca,
Sr:Ca, and Ba:Ca) and ontogenetically between the past
and recent bands (Li:Ca, Mg:Ca, and Zn:Ca). Similar ele-
mental enrichment patterns through life of coastal and
migratory species have been documented, despite species-
specific physiologies and ecologic behaviors (i.e. habitat
use, feeding habits, life stage) (Livernois et al. 2021). Pre-
vious scientific observer and telemetry research has yet to
conclude that juvenile Shortfin Mako make large-scale
migrations, giving us confidence in our assumption that
movement between nurseries is unlikely for these Shortfin
Mako, allowing comparisons between nurseries and onto-
geny. Investigating individual trace element variability
may increase understanding of juvenile Shortfin Mako
spatial ecology and ontogeny in the eastern North Pacific
Ocean.

Chemical Variation between Nursery Regions

To compare the SCB and BSV nurseries, the recent
band element to Ca ratios were assumed to characterize
vertebral elemental uptake for approximately the previous
month of the individual’s life. When comparing average
elemental concentrations between nurseries, we observed
that Ba:Ca (Xscg = 13.96 pmol/mol), Sr:Ca (Xscg =
2.13 pmol/mol), and Zn:Ca (Zn Xgcp = 86.05 pmol/mol)
concentrations in the SCB were significantly different than
Ba:Ca (Xgsy = 5.06 pmol/mol), Sr:Ca (Xpsy = 2.24 pmol/
mol), and Zn:Ca (Xgsy = 65.33 pmol/mol) concentrations
in the BSV.

Both the SCB and BSV ecosystems are highly produc-
tive nurseries due to seasonal anticyclonic gyres, shallow
nearshore waters, coastal topography, and prevailing wind
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TABLE 3. Results of a paired #-test comparing edge versus birth band
data set, with bold, italicized P-values displaying significantly different
means.

Element Location df t P-value

Li:Ca Past 9 —4.14 <0.01
Recent 9

Mg:Ca Past 9 14.69 <0.01
Recent 9

Mn:Ca Past 9 1.48 0.16
Recent 9

Zn:Ca Past 9 3.84 <0.01
Recent 9

Sr:Ca Past 9 1.01 0.33
Recent 9

Ba:Ca Past 9 —-0.94 0.36
Recent 9

patterns that can lead to intense regional upwelling
(Mancilla-Peraza et al. 1993; Amador-Buenrostro et al.
1995; Dailey et al. 2021). However, the BSV ecosystem
experiences weaker regional upwelling compared to the
SCB, both due to BSV being located further south away
from the California Current system as well as seasonal
cyclonic circulation within the bay (Amador-Buenrostro
et al. 1995). These factors contribute to a decrease in
upwelling intensity at times (Huyer 1983), which is not
observed in the SCB.

Research conducted on both Shortfin Mako and White
Shark Carcharodon carcharias indicates that Ba in verteb-
ral cartilage increases in areas of high upwelling (Chris-
tiansen 2011; Mohan et al. 2018). This is consistent with
our findings that Ba:Ca ratios were higher in the SCB,
suggesting that juvenile Shortfin Mako in the SCB nur-
series experienced higher exposure to upwelled waters
compared to juveniles in BSV. The SCB experiences
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periods of more intense upwelling compared to BSV
(Huyer 1983; Wingfield et al. 2011), with Shortfin Mako
vertebrae (Mohan et al. 2018) exhibiting higher Ba:Ca as
a result (Mohan et al. 2018). Upwelling may result in both
an increase in dissolved Ba®* ions in the water or colder
temperatures that may affect Ba:Ca incorporation, as
demonstrated in controlled experiments with elasmo-
branchs (Smith et al. 2013).

Increased Sr:Ca concentration in elasmobranch verteb-
rae is correlated to increased environmental salinity for
White Shark (Raoult et al. 2016), Smalltooth Sawfish Pris-
tis pectinata (Scharer et al. 2012), Scalloped Hammerhead
Sphyrna lewini (Coiraton et al. 2020), and Bull Shark
Carcharhinus leucas (Tillett et al. 2011). Similarly, in Port
Jackson Shark Heterodontus portusjacksoni in a lab-
controlled setting, Sr uptake in vertebrae is positively cor-
related to temperature and salinity (Pistevos et al. 2019).
Both environmental temperature and salinity fluctuations
are commonly found in intense upwelling areas (Hollar-
smith et al. 2020), suggesting that varying upwelling inten-
sities between the SCB and BSV may lead to both Ba:Ca
and Sr:Ca concentration variation in the vertebrae of juve-
nile Shortfin Mako.

Unlike Ba and Sr, whose concentrations have displayed
correlations to oceanographic factors, Zn has shown to be
driven by physiology (growth, neurotransmission, cell sig-
naling, protein regulation) (Vallee 1976; Smith et al. 2013;
McMillan et al. 2017b). The highest vertebral zinc concen-
trations in both Shortfin Mako and White Shark occur in
early life (White Shark intermedialia = 13.39 £+ 0.84 ppm,
Shortfin Mako age-0 and early juvenile ~45 to 30 ppm),
followed by lesser postbirth zinc concentrations (White
Shark corpus calcareum = 3.38 +£3.38 ppm, Shortfin
Mako late juvenile and adult ~35 to 22 ppm) (Raoult
et al. 2018; Livernois et al. 2021). In our results, we
observe variation between the recent life of Shortfin Mako
between nurseries, indicating that each nursery has a dis-
tinct chemical signature. We hypothesize that Zn:Ca varia-
tion between mothers may explain observed variation
between juveniles due to maternal offloading of elements
during development. Maternal offloading of metals (i.e.
Al, As, Cd, Pb, Se) in elasmobranchs has been observed
via transfer from maternal blood plasma and intracapsular
and uterine fluids (Lyons et al. 2013, 2019; Naidoo et al.
2017). Although the maternal offloading of Zn has not
been specifically observed, offloading of other (micronutri-
ent) metals suggests it may also be inherited from the
mother. Similar findings were made in Edmonds
et al. (1996), in which varying Zn:Ca ratios in jaw carti-
lage of Gummy Shark Mustelus antarcticus was deter-
mined to be a wuseful method of distinguishing
populations. Edmonds et al. (1996) hypothesized that dif-
ferent populations of Gummy Shark were experiencing
varying oceanographic conditions and diet, contributing to
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variation in Zn:Ca. Based on our findings, we theorize
that there may be a mechanism (environmental and/or
physiological) that leads to juveniles from these nurseries
having distinct Zn:Ca signatures both between nursery
regions (SCB and BSV) and between past and recent life.
We recommend future research into the pinpointing of
these mechanisms to allow fishery managers the opportu-
nity for age-class matching with future samples. Further-
more, we employ the necessity of telemetry research of
juveniles in this region in order to understand movement
capabilities and potential habitat shifts throughout the
year.

Changes in Elemental Concentration Postbirth

When comparing the past to the recent bands of indivi-
dual juvenile Shortfin Mako sampled in both SCB and
BSV, distinct and consistent elemental concentration shifts
occurred for Li:Ca (A -3.78 pmol/mol), Mg:Ca (A +12.26
pmol/mol), and Zn:Ca (A +19.10 pmol/mol) (Figure 4).
Variation is likely due to a combination of shifts in diet
and physiology as well as potential movement in local
habitat for Zn specifically.

In previous research, variations in Mg:Ca ratios in ver-
tebrae of Round Stingray Urobatis halleri were attributed
to fluctuations in ambient temperature (Smith et al. 2013).
Smith et al. (2013) reported an inverse relationship
between temperatures and Mg:Ca ratios, leading to a
hypothesis that vertebral Mg:Ca ratios could reflect an
individual’s temperature history. Since we observed an
increase in Mg:Ca (A +12.26 pmol/mol), based on Smith
et al. (2013) there may be a change in environmental tem-
peratures experienced by these juvenile Shortfin Mako as
they mature, either through localized movement or
through seasonal temperature variations that reflected in
vertebral chemistry.

The variability of Li:Ca ratio in elasmobranch verteb-
rae has not been well described. The Li concentrations in
elasmobranch blood plasma and urine have been reported
as a natural marker of rectal gland contribution to inter-
nal Na balance (Fleishman et al. 1986). This correlation
between Li and the balance of internal Na in elasmo-
branchs implies that there may be a connection to Li and
environmental salinity, as seen in freshwater and marine
teleosts (Fleishman et al. 1986), which may then reflect in
vertebral chemistry. As juvenile Shortfin Mako environ-
ments change between past and recent life, either through
localized movement or seasonal environmental variation
(Nasby-Lucas et al. 2019), changes in water mass charac-
teristics (temperature and salinity) may lead to shifts in
both Li:Ca and Mg:Ca ratios, displayed in both the past
and recent band of the vertebra.

However, it is important to note that Ba and Sr, two
elements that in previous studies have been shown to be
highly correlated to both temperature and salinity
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variation (Christiansen 2011; Tillett et al. 2011; Scharer
et al. 2012; Raoult et al. 2016; Mohan et al. 2018; Piste-
vos et al. 2019; Coiraton et al. 2020), were not signifi-
cantly different between past and recent life. Similarly,
both Mg and Li were not significantly different between
nursery regions, even though previous research indicates
their correlation to temperature and salinity variations
(Fleishman et al. 1986; Smith et al. 2013). Both Mg and
Li are much less described in vertebral chemistry research
than Sr and Ba, suggesting that future research should
focus on Mg and Li uptake in elasmobranch species.

Vertebral Zn:Ca ratios were significantly different
between both the nurseries and across ontogeny (between
past and recent life). The element Zn has been shown to
be correlated to physiological processes (growth, neuro-
transmission, cell signaling, protein regulation) (Val-
lee 1976; Smith et al. 2013; McMillan et al. 2017b),
particularly during ontogeny (Raoult et al. 2018). Raoult
et al. (2018) reported highest Zn:Ca ratios prebirth, with
variation in concentrations, both positive and negative, as
the individual grows (Raoult et al. 2018). Furthermore,
previous elasmobranch research has found positive corre-
lations between vertebral Zn:Ca ratios with ambient water
temperature (Smith et al. 2013), as well as its use in distin-
guishing populations (Edmonds et al. 1996) and their
movements (Tillett et al. 2011). In this study, variation
between nurseries may be due to a mix of both pre- and
postbirth factors, leading to both the SCB and BSV hav-
ing distinct Zn:Ca signatures. Variation in coastal move-
ments between past and recent life could contribute to
variability of vertebral Zn:Ca, similar to the findings of
Tillett et al. (2011). Not only are Shortfin Mako display-
ing distinct Zn:Ca ratios based on their respective nursery
region, they are also displaying distinct Zn:Ca ratios based
on their life stage.

While variation in Li:Ca (A -3.78 pmol/mol, A -0.26
ppm), Mg:Ca (A +12.26 pmol/mol, A +2.97), and Zn:Ca (A
+19.10 pmol/mol, A +12.43 ppm) between past and recent
was detected, quantifying the degree of change and how
that compares to previous studies is very important. Pre-
vious research has described elemental shifts of Shortfin
Mako across life stages, both age 0 and early juvenile, in the
Gulf of Mexico (Livernois et al. 2021), which in contrast to
this study reported a decrease in Mg (~3,650 to ~3,300 ppm,
A -350 ppm) and Zn (~40 to ~35 ppm, A -5 ppm) concen-
trations. However, Livernois et al. (2021) did report a
decrease in Li (~1.4 to ~1.3ppm, A -0.1 ppm) between
age-0 and early juvenile Shortfin Mako, similar to our
findings (Li:Ca A -3.78 pmol/mol, —0.26 ppm) with less
intensity. We must note as well that Livernois et al. (2021)
conducted longitudinal laser transects across vertebra,
between the past and recent, while our study discreetly
laser ablated laterally, disregarding the region between
bands. However, this difference in approach does not
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inhibit the ability to compare the findings of our respective
studies. We hypothesize that contrasts in elemental profiles
may be due to differing oceanographic conditions between
the Gulf of Mexico (influenced by river discharge and
Loop Current eddies) and the California coast (driven by
the California Current). The Ba and Sr concentrations,
with uptake potentially linked to water mass characteris-
tics (temperature and salinity), were stable through life in
both our study and Livernois et al. (2021), leading us to
conclude that significant habitat variation between past
and recent life did not occur. The small range of elemental
variations across life stages compared with other shark
species (Livernois et al. 2021) suggested that juvenile
Shortfin Mako in the Gulf of Mexico experience consistent
oceanographic characteristics (temperature and salinity)
throughout maturity, as observed in this study. While pin-
pointing the exact drivers in Mg:Ca, Li:Ca, and Zn:Ca
variation, we can conclude that changes in the lifestyle
(habitat and foraging behavior) of sampled juvenile Short-
fin Mako between birth and capture is reflected in the
increase of recent Mg:Ca (A +12.26 pmol/mol) and Zn:Ca
(A +19.10 pmol/mol) concentrations and a decrease of
recent Li:Ca (A -3.78 pmol/mol) concentration compared
with the past.

Conclusion

Results from this study revealed the potential for using
vertebral chemistry for characterizing regional differences
and local shifts between habitats of juvenile Shortfin
Mako in the California Current. Results suggested limited
regional movements between SCB and BSV nursery
grounds and local shifts in coastal habitat or feeding as
juveniles grow. Future research involving both wild-
caught and lab-controlled model specimens will improve
our understanding of the mechanisms behind elemental
deposition. Specifically, we recommend future research
into maternal offloading mechanisms and the overall influ-
ence that offloading has on birth band concentrations.
Understanding what drives element variations in vertebrae
is likely complicated but will further efforts to use ele-
ments as a tool in species management. Our findings may
have implications for the technique of age-class matching
juvenile baseline signatures to adult samples to identify
natal origin and estimate contributions of different nursey
grounds (Kitchens et al. 2018; Wells et al. 2020). The abil-
ity to determine the origin of highly migratory species
allows fishery managers to better understand how nursery
habitats contribute to adult populations.
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