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Abstract: Intrinsic tracers, such as stable isotopes of carbon and nitrogen, are common dietary
markers that accumulate in the muscle tissue of consumers and can be used to determine the dietary
sources and trophic positions of consumers. The aim of this study was to assess regional variation in
the trophic ecology of wahoo (Acanthocybium solandri) using bulk stable isotopes. Muscle biopsies of
wahoo were collected from four regions in the western Atlantic Ocean: the eastern Gulf of Mexico,
western Gulf of Mexico, Northwest Atlantic Ocean, and Caribbean Sea. Muscle tissue δ13C and δ15N
values for wahoo ranged from −15.8‰ to −18.8‰ and from 7.2‰ to 12.8‰, respectively. Wahoo
collected in the Caribbean Sea displayed the highest mean δ13C value (−16.3‰), and individuals
from this region were statistically different from the three other regions sampled. Mean δ15N values
were elevated for wahoo collected in the eastern and western Gulf of Mexico (11.4‰ and 11.1‰,
respectively), and the values were over 2‰ higher than samples from the Northwest Atlantic Ocean
and Caribbean Sea. Trophic position (TP) was estimated using δ15N baselines (zooplankton) and
δ15N wahoo values for each region, and mean TP was 0.4 to 0.9 higher in the Caribbean Sea relative
to the three other regions, suggesting that wahoo in this region feed on higher-trophic-level prey. The
results indicate that δ15N baselines and the trophic positions of wahoo each vary as a function of
their geographic location, which supports the hypothesis that this species feeds opportunistically
throughout its range.

Keywords: trophic ecology; dietary tracers; stable isotope analysis; trophic position

Key Contribution: This study demonstrates regional variation in the intrinsic dietary tracers of
wahoo throughout four regions of their range, showcasing the importance of δ15N baselines in
estimating the trophic position of migratory predators.

1. Introduction

Top predators play an important role in the overall health and sustainability of marine
ecosystems. Many higher-order predators (e.g., billfishes, swordfish, tunas, wahoo) are
capable of regulating populations of lower-level consumers through top-down control [1].
As a result, shifts in their foraging may initiate trophic cascades that affect multiple trophic
levels of the food web [1]. Given the importance of top-down regulation on ecosystem
productivity and resiliency, scientists are increasingly interested in determining the trophic
relationships of higher-order consumers within their respective food webs, which can
provide valuable information on the role of these predators in regulating energy transfer
and community structure within marine food webs.

An improved understanding of the source(s) of organic matter (i.e., primary producers)
supporting top predators and the trophic structure of marine food webs is crucial for
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resource managers, as it influences the stability and resiliency of marine ecosystems. To
date, trophic information for many predatory marine teleosts is limited, and understanding
the role of these apex predators in marine ecosystems throughout their range is vital for
proper management of those systems. Intrinsic dietary tracers, such as stable isotopes,
are increasingly used in trophic ecology studies of marine fishes [2–5]. Stable isotope
ratios of carbon and nitrogen can elucidate source(s) of organic matter that supports
a community and the trophic position of consumers in the food web, respectively. δ13C
only fractionates 0.5–1.5‰ per trophic level, and this marker is typically used to determine
the source(s) of organic matter supporting consumers [5]. In contrast, δ15N is often used as
a proxy for trophic position because this marker fractionates approximately 3‰ over each
trophic level [5].

Wahoo (Acanthocybium solandri) are members of the family Scombridae that includes
tunas and mackerels. Wahoo are predators found in the epipelagic zone throughout tropical
and subtropical waters around the globe [6]. Wahoo are assumed to be opportunistic
piscivores with occasional contributions to diet composition from other taxa, including
cephalopods and crustaceans [7,8]. The aim of this study was to apply stable isotope
analysis (SIA) to evaluate the source(s) of organic matter supporting wahoo and their
trophic position across four geographic regions in the western Atlantic Ocean. Two common
dietary markers (δ13C and δ15N) were used to elucidate broad feeding inferences of wahoo
and assess regional variation in trophic relationships.

2. Materials and Methods

Muscle biopsies of wahoo were collected from four sampling regions in June through
October of 2021 (Figure 1): the eastern Gulf of Mexico (n = 11), western Gulf of Mexico
(n = 10), Northwest Atlantic Ocean (n = 10), and Caribbean Sea (n = 10). Biopsies were
opportunistically collected from individuals caught via recreational and commercial fishing
operations once vessels returned to port. All sampled individuals were between 110 cm
and 140 cm fork length [9], representing sexually mature adults [10]. Muscle biopsies were
collected in the field and stored at −20 ◦C between collection and processing. Cleaned
samples were then lyophilized for 24 h; freezing was completed at −45 ◦C for 12 h, and
drying was completed via vacuum pump at 50 ◦C for another 12 h. Lyophilized samples
were powdered with a mortar and pestle and weighed to 1 mg ± 0.1 mg in 9 × 5 mm
tin capsules. Tissue samples were analyzed on an elemental analyzer isotope ratio mass
spectrometer (EA-IRMS; Sercon Ltd., Cheshire, UK) at the University of California Davis
Stable Isotope Facility. Delta notation (δ) was used to present isotope ratios (13C:12C or
15N:14N) relative to international standards: Vienna PeeDee Belemnite (VPDB) for carbon
and air (N2) for nitrogen. The long-term standard deviations of the isotope ratios at this
facility are 0.2‰ for δ13C and 0.3‰ for δ15N. C:N ratios of the analyzed samples were
below 3.5, indicating that δ13C values were not significantly influenced by lipid content
in the muscle and thus did not require lipid extraction [11]. Although smaller sample
sizes may affect the power of statistical tests, variation of δ13C and δ15N signatures within
regions was lower than among regions and thus the sample size was sufficient to assess
regional differences.

Trophic position (TP) was calculated using Equation (1), where 3 represents the aver-
age enrichment of δ15N per trophic level [12]. Because baseline δ15N values of the primary
producers varies across sampled regions, adjusted TP (TPADJ) estimates were estimated us-
ing regional δ15N values reported for the broader Atlantic Ocean and Gulf of Mexico [13,14];
standard TP (TPSTD) estimates based on a single δ15N baseline value that does not account
for regional variation were also estimated. The isoscapes used provided δ15N values for
zooplankton (δ15NZP), which are indicative of the trophic level above primary producers.
Following the average enrichment of δ15N per trophic level stated above, the δ15Nproducer

value was determined by (δ15NZP − 3).

TPconsumer = 1 + (δ15Nconsumer − δ15Nproducer)/3 (1)
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Regional variation in δ13C and δ15N values were investigated with a one-way analysis
of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test. Quadratic dis-
criminant function analysis was used to determine classification success for each collection
region based on δ13C and δ15N values. All statistical analysis was conducted in RStudio
(R version 4.2.2).
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Figure 1. Sampling regions for wahoo in the western Atlantic Ocean: western Gulf of Mexico (Texas),
eastern Gulf of Mexico (Mississippi to Florida), Caribbean Sea (Puerto Rico, U.S. Virgin Islands),
and Northwest Atlantic Ocean (North Carolina). All samples were opportunistically collected via
recreational and commercial fishing operations once vessels returned to port.

3. Results

3.1. Regional δ13C and δ15N Values

Muscle tissue δ13C and δ15N values of wahoo varied across the four geographic loca-
tions sampled. Specifically, δ13C values of wahoo from the Caribbean Sea were significantly
different compared to the Northwest Atlantic Ocean and both regions in the Gulf of Mexico
(ANOVA, p < 0.01; Figure 2). Wahoo collected from the Caribbean Sea had significantly
enriched δ13C values (−16.3‰ ± 0.32; mean ± 1 SD), with relatively similar signatures
shown in the other three regions: Northwest Atlantic Ocean (−17.2 ± 0.66), eastern Gulf of
Mexico (−17.1 ± 0.26), western Gulf of Mexico (−17.0 ± 0.29) (Table 1). Regional variation
was also observed for muscle tissue δ15N values, with samples collected from both regions
in the Gulf of Mexico (east = 11.4 ± 1.0, west = 11.1 ± 1.1) displaying significantly higher
values relative to samples from the Northwest Atlantic Ocean (9.2 ± 0.59) and Caribbean
Sea (8.4 ± 0.53) (ANOVA, p < 0.01; Figure 2); however, no significant differences were
detected between the two regions in the Gulf of Mexico or between the two regions in the
Atlantic Ocean.

Collection locations in the Gulf of Mexico and Atlantic Ocean were grouped to further
evaluate large-scale variation, and δ13C and δ15N signatures from the two larger geographic
regions were significantly different (MANOVA, p < 0.01). Quadratic discriminant function
analysis (QDFA) parameterized with δ13C and δ15N signatures displayed a relatively high
cross-validated classification success (85%) in the two larger regions, indicating that these
dietary signatures show promise for retrospectively determining the collection location of
wahoo (Gulf of Mexico vs. Atlantic Ocean) for samples of unknown origin.
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Figure 2. Confidence ellipses (50%) based on δ13C and δ15N values of wahoo from the Gulf of Mexico
(East, open triangles; West, filled triangles), Northwest Atlantic Ocean (open circles), and Caribbean
Sea (filled circles). Values for individual wahoo shown with symbols.

Table 1. Size (mean FL in cm ±1 SD), baseline zooplankton δ15N (δ15NZP) values [13,14], standard
(STD) trophic position (based on same δ15N baseline value for all regions), and adjusted (ADJ)
range and mean estimates of trophic position (mean ± standard deviation) for wahoo using region-
specific δ15NZP values from the four sampling regions. TPSTD based on standard δ15NZP of 6.2 for all
four regions, while TPADJ range and mean estimates based on region-specific δ15NZP values shown
in table.

Region Size (cm FL) δ15NZP TPSTD TPADJ Range TPADJ Mean

Gulf of Mexico
East 130.1 ± 8.0 6.2 3.7 ± 0.4 2.9–4.0 3.7 ± 0.4
West 124.4 ± 10.1 6.2 3.6 ± 0.4 2.9–4.2 3.6 ± 0.4

Atlantic Ocean

Caribbean Sea 132.3 ± 6.8 2.0 2.7 ± 0.2 3.7–4.4 4.1 ± 0.2
Northwest Atlantic 123.9 ± 5.1 5.5 3.0 ± 0.2 3.0–3.7 3.2 ± 0.2

3.2. Regional TP Estimates

Estimates of standard trophic position (TPSTD) for wahoo were estimated using
a standard baseline for all regions. In addition, adjusted TP (TPADJ) estimates were derived
using δ15NZP values (baseline) for each region from available isoscapes [13,14]. Standard
TP estimates of wahoo were between 2.7 and 3.7, with significantly higher values reported
for wahoo collected in the Gulf of Mexico (ANOVA, p < 0.001). Adjusted TP estimates
of wahoo derived using regional estimates of δ15NZP markedly increased the position of
individuals from the Caribbean Sea by nearly two trophic steps (4.1). While this region was
characterized by the lowest TP using a single δ15N baseline value, TP was approximately
a half to full trophic step higher when using region-specific baseline values and significantly
different from the three other regions (Tukey HSD, p < 0.05). Adjusted TP estimates using
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region-specific baselines were lowest in the Northwest Atlantic Ocean, and both TP range
and means were similar (3.6–3.7) between the two regions in the Gulf of Mexico.

4. Discussion

Regional differences in muscle tissue δ13C values of wahoo collected across the four
regions were observed, but similarities were also present for individuals collected from
different regions within the Gulf of Mexico and within the Atlantic Ocean. Similar δ13C
values for wahoo in both the eastern and western Gulf of Mexico support the premise that
source(s) of organic matter supporting the pelagic food web and associated top predators
in this region are similar in ecosystems both east and west of the Mississippi River Delta.
Recently reported δ13C isoscapes for zooplankton in the outer shelf and slope waters of
the northern Gulf of Mexico also reported limited variation in δ13C values [15], which is in
accord with our findings for wahoo. Outside the Gulf of Mexico, our finding of comparable
δ13C values for wahoo collected in the Northwest Atlantic Ocean and Caribbean Sea was
less expected given the distance between the two regions and different latitudinal biomes
of each collection area (tropical versus temperate); however, variation in the δ13C values
of both phytoplankton and zooplankton in the general areas that wahoo were sampled in
the Northwest Atlantic Ocean (Mid-Atlantic Bight) and Caribbean Sea (Lesser Antilles) is
generally limited (~1–2‰ range) [16]. This indicates that although these two provinces are
separated geographically, primary sources of organic matter and/or δ13C values of major
autotrophs in both regions may be comparable.

Muscle tissue δ15N values of wahoo also varied across the four regions, with similari-
ties observed for individuals collected from the two regions in the Gulf of Mexico and from
the two regions in the Atlantic Ocean. δ15N values for wahoo from the Gulf of Mexico were
significantly higher than individuals from the Atlantic Ocean and generally comparable to
previously reported values for wahoo throughout their range [9,17]. A study conducted in
the Galapagos Islands reported mean δ15N values for wahoo of 15.3‰, nearly 4.0‰ higher
than any region assessed in the present study [18]; however, estimating adjusted TP using
mean zooplankton δ15N values from this region of the Pacific Ocean resulted in similar
values in our study [19], further confirming the importance of incorporating region-specific
baseline δ15N data for estimating TP. Unique baseline δ15N values were present across
the sampling locations of this study, with significantly lower δ15N values of zooplankton
(δ15NZP) present in the Caribbean Sea [20] compared to the Gulf of Mexico and Northwest
Atlantic Ocean. Lower δ15NZP values were shown to be characteristic of oligotrophic waters
due to increased nitrogen fixation by diazotrophic cyanobacteria [20,21], whereas waters
influenced by anthropogenic nitrogen sources from riverine output such as the Mississippi
River delta tend to report higher δ15NZP values [14,22]. Despite significantly higher δ15N
values for wahoo in the Gulf of Mexico, incorporating δ15NZP values into TP estimates
accounted for regional variation in δ15N baselines and elevated the TP of wahoo from the
Caribbean Sea. Nevertheless, adjusted TP estimates of wahoo from all four regions were
comparable to previously reported values in different parts of their range and also similar
to other higher-order marine teleosts in pelagic ecosystems [10,23–25], further supporting
the premise that wahoo appear to be opportunistic predators that feed at similar trophic
levels throughout their range in tropical and subtropical waters.

It is well understood that baseline δ13C and δ15N values and prey fields vary spatially
and temporally, and therefore movements or migrations of predators can lead to shifts in
prey selection and TP. As a result, a better understanding of the home range and migrations
of wahoo may help explain observed regional trends observed in muscle tissue δ13C and
δ15N. For example, similarities in muscle tissue δ13C and δ15N values for wahoo in both
the eastern and western Gulf of Mexico may be associated with active movements or
migrations between the two regions. Conversely, conspicuous differences in δ13C and δ15N
values observed for individuals collected from the two larger geographic (Gulf of Mexico
vs. Atlantic Ocean) regions may indicate that long-distance movements between these
two regions is less likely. Data on the population connectivity of wahoo coupled with
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higher quality δ13C and δ15N baselines, including other sources of dietary information, are
critically needed to elucidate the drivers of region-specific variation and further clarify
trophic relationships for this species.
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