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1  | INTRODUC TION

Atlantic bluefin tuna (Thunnus thynnus) is an oceanic predator char-
acterized by highly complex migratory behavior and trans-oceanic 
movement (Block et al., 2001, 2005; Rooker et al., 2007). Several 
lines of evidence support the existence of two separate regions 
of spawning or production: Gulf of Mexico (western stock) and 
Mediterranean Sea (eastern stock) (Block et al., 2005; Stokesbury 
et al., 2004; Teo et al., 2007). This species represents an important 
fishing resource both in the Atlantic Ocean and Mediterranean Sea, 
and its exploitation during several centuries has led, in the last de-
cades, to severe declines in both western and eastern populations 
(Longo & Brett, 2012). Even though stocks show signs of increasing 
in recent years, as reported by the International Commission for the 
Conservation of Atlantic Tunas (ICCAT Report 2018–2019), more 
information on the structure and dynamics of both populations is 
required in order to develop an efficient management system of this 
resource. The ICCAT currently manages T. thynnus as two separate 
stocks even though some degree of mixing is known to occur (Block 
et al., 2001, 2005; Quílez-Badia et al., 2016; Rooker et al., 2014; 
Rooker, Secor, De Metrio, Kaufman, et al., 2008; Rooker, Secor, De 
Metrio, Schloesser, et al., 2008), which has caused some to question 
the two-stock management approach (Goldstein et al., 2007).

In the Mediterranean Sea, principal spawning areas of T. thyn-
nus occur in western (Balearic Islands), central (Tyrrhenian Sea), and 
eastern (Levantine Sea) regions of the basin (Karakulak et al., 2004; 
Oray & Karakulak, 2005), albeit other spawning sites may also exist 
(Arrizabalaga et al., 2018; Rooker et al., 2007). A significant frac-
tion of the T. thynnus produced in the Mediterranean Sea is known 
to migrate through the Strait of Gibraltar as juveniles, supporting 
an important fishery in the Bay of Biscay and other locations in the 
eastern Atlantic Ocean (Aranda et al., 2013; Fraile et al., 2015). To 
date, the origin of recruits in this region is largely unknown. Our cur-
rent understanding of the relative importance of the three spawning 
areas to fisheries, both within and outside the Mediterranean Sea, 
is critical to the management of the eastern stock. Moreover, some 
recent findings, based on thousands of genome-wide single-nucleo-
tide polymorphism (SNP) markers, have shown that Mediterranean 
samples are genetically indistinguishable (Rodríguez-Ezpeleta 
et al., 2019) in contrast to previous results based on few molecular 
markers (Boustany et al., 2008; Riccioni et al., 2010). Therefore, this 
found underline the importance of additional tools to account for 
the contribution of each spawning area to the overall population.

The chemical composition of calcified structures such as oto-
liths (ear stones) represents a promising alternative to tagging or 
genetics studies, particularly for determining the natal origin and 
movement of T. thynnus (Fraile et al., 2015; Rooker et al., 2014, 2019; 
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Rooker & Secor, 2019). It is generally accepted that resorption or 
remobilization of elements in the otoliths during ontogeny is min-
imal (Thresher, 1999) and the accreted material reflects the physi-
cochemical conditions of the seawater inhabited by the individual 
(Elsdon & Gillanders, 2003).

Therefore, material deposited during the early life period can 
provide information about physicochemical conditions of the nurs-
ery area or place of origin (Rooker & Secor, 2019; Rooker, Secor, De 
Metrio, Kaufman, et al., 2008). Here, we assess the utility of trace 
elements in the otoliths of age-0 T. thynnus from different nurseries 
in the Mediterranean Sea. This work builds on earlier assessments of 
trace element chemistry (Rooker et al., 2003) and further evaluates 
the promise of using trace elements to complement stable carbon 
and oxygen isotopes for research on the origin and mixing of T. thyn-
nus (Rooker & Secor, 2019).

2  | MATERIAL S AND METHODS

Sixty age-0 T. thynnus (20–46 cm fork length) were collected from 
August to October 2012 from the primary nursery areas (20 indi-
viduals per nursery) in three regions of the Mediterranean Sea: west-
ern (Balearic Sea), central (Tyrrhenian Sea) and eastern (Levantine 
Sea). All the three regions were sampled independently by commer-
cial long-line fishermen. Age-0 T. thynnus were collected under the 
provision of the ICCAT Atlantic Wide Research Program for Bluefin 
Tuna (GBYP) (Figure 1).

Sagittal otoliths were extracted from each T. thynnus. A single 
otolith (i.e. right or left sagittae) was used for the analysis based on 
random assignment. Otoliths were then cleaned of adhering tissues, 
soaked in 3% hydrogen peroxide for few minutes, and rinsed with 
Milli-Q water. Each otolith was embedded in Struers epoxy resin 
(EpoFix™) and sectioned using a low speed diamond-blade ISOMET 
saw to obtain 1.5 mm transverse sections that included the core 
(Rooker et al., 2014). Sections were rinsed (MilliQ water) and mounted 
(5 per slide) on a glass slide with Crystalbond™. Otolith thin sections 
were polished to the core using wet-dry sandpaper and 3 µm alu-
minum oxide, triple rinsed and air dried under a laminar flow hood. 

Only one otolith from each individual (i.e., right or left) was used for 
trace analysis based on random assignment. Trace elements (Li, Mg, 
Mn, Zn, Sr, Ba) commonly used in chemistry application as tracers of 
natal habitats (Campana et al., 2000; Miller et al., 2005; Patterson 
et al., 2004; Rooker et al., 2001) were determined from polished 
otoliths using a laser ablation inductively coupled plasma mass spec-
trometer, LA-ICP-MS (XSeries 2, Thermo Scientific ICP-MS and New 
Wave Research NWR 213 laser system) at Texas A&M University 
at Galveston. The calibration of the instrument was achieved using 
certified reference material (NIST 614) distributed by the National 
Institute of Standards and Technology. The standard was analyzed 
before and after each otolith. 44Ca was used as internal standard and 
its concentration normalized to be 380,000 µg/g. Concentration of 
all the other elements were calculated as ratio to Ca. Estimated de-
tection limits (LODS) (µg/g) for examined elements were estimated 
as the quantity of analytes required to produce a signal equivalent to 
three times standard deviation of the NIST 614 (n = 30). These LODS 
were estimated as: 7Li: 0.48, 24Mg: 2.08, 55Mn: 0.33, 66Zn: 1.17, 88Sr: 
3.71, 137Ba: 1.24. Trace element chemistry of each otolith was based 
on averaging element:Ca ratios from 7 laser ablation spots carried 
out across the otolith surface, extending out ~150 µm from the focus 
(i.e., central point) on both dorsal and ventral ridges. All analyses 
were conducted at a repetition rate of 10 Hz and at 70% power. Each 
spot had an ablation diameter of 50 µm with an ablation dwell time 
of 12 s. The same parameters were applied to NIST 614 standard 
except that the ablation dwell time was 20 s. Here, the same portion 
of the otolith attributable to age-0 class was considered, meaning 
that the time interval surveyed with LA-ICP-MS (portion of otolith) 
for each fish was the same. The age was evaluated on the age-length 
relationship and, based on data by La Mesa et al. (2005), mean size 
was within a month for all three regions.

Differences in trace element chemistry of age-0 T. thynnus 
among regional nurseries were evaluated with one-way tests for 
independent groups. Shapiro-Wilk test and Bartlett test (normal 
variables) or Leven test (non-normal variables) were performed to 
assess normality and variance homogeneity respectively. In addi-
tion, the potential influence of size of the individuals on elemental 
levels were investigated. An analysis of covariance (ANCOVA) using 

F I G U R E  1   Sampling areas for Thunnus 
thynnus in the Mediterranean Sea and 
collection information
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fish length as covariate was performed for Mg, significantly influ-
enced by the size, in order to adjust the elemental levels in sam-
pling sites. Normality and homoscedasticity were tested by residuals 

analysis. An analysis of variance (ANOVA) model, with Tukey's post 
hoc tests, was applied for elements that satisfy both assumptions 
(Li and Sr), while non-parametric Kruskal-Wallis test and pairwise 

F I G U R E  2   Scatterplot of fork length (cm) versus element:Ca ratios (µmol/mol) for otoliths of Thunnus thynnus. Colors of points 
correspond to the regional nurseries (western, central and eastern Mediterranean Sea). Boxplots (showing median, 10th, 25th, 75th, 90th 
percentiles and outliers) of fork length (x-marginal plot) and otolith element:Ca ratios (y-marginal plot) by areas were also reported at the top 
and the right respectively
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Wilcoxon Rank Sum Tests were applied for non-normal variables 
(Zn). Differences in Mn and Ba ratios were assessed with Welch's 
heteroscedastic with post-hoc Duncan test due to the violation of 
variance homogeneity assumption. Afterwards, a Random Forest 
analysis (RF) was performed in order to verify if the trace elements 
were able to discriminate the regional nurseries and assess their im-
portance for the discrimination. The RF is a powerful ensemble ma-
chine-learning method used in classification, which constructs from 
the input variables a multitude of decision trees to output predicted 
classes. The number of trees for the classification is selected using a 
stepwise forward procedure to pick models with smaller estimation 
of error rate. The RF provides the confusion matrix, that expresses 
the percentage agreement between observed groups and groups 
predicted by the model. It also produces the variable importance ac-
cording to the higher values of Mean Decrease in Accuracy (MDA). 
This index is the normalized difference between the classification 
accuracy when the variable is included as observed and the classifi-
cation accuracy when the variable is randomly permuted. The more 
the accuracy of the random forest decreases due to the permutation 
of a single variable, the more important that variable is deemed in 
the classification (Liaw & Wiener, 2002). The choice of discriminant 
variables was carried out using backwards elimination with the min-
imization of error rate as selection criterion.

All statistical testing was performed by R using statistical soft-
ware R 3.6.3 (R Development Core Team, 2020).

3  | RESULTS

In Figure 2 the correlation of element ratios with fish length was 
analyzed. The median length of the individuals from eastern 
Mediterranean was significantly lower compared to other areas (x-
marginal plot in Figure 2). Only the Mg ratios were negatively cor-
related with fish length (r = −.76; p-value <.05). All tested elements, 

except Li:Ca, were different among the three regional nurseries in 
the Mediterranean Sea (y-marginal plot in Figure 2; p < .05). The 
ANCOVA results for Mg:Ca indicated that the individuals from 
eastern Mediterranean has significantly higher concentrations, 
compared to the other two areas . A similar trend was observed 
for Zn:Ca ratios. In contrast, otolith Mn:Ca ratios for age-0 T. thyn-
nus from the central Mediterranean were significantly higher than 
the eastern and western regions (p < .05; Figure 2). Otolith Sr:Ca 
ratio differed between samples of age-0 T. thynnus from eastern 
Mediterranean and western Mediterranean with higher values in 
samples from eastern region, while otolith Ba:Ca ratios was lower 
in western Mediterranean compared with the other two regions 
(p < .05; Figure 2).

Mg:Ca would seem a good discriminator but the negative correla-
tion with fish size suggests that the variability could have reflected 
the inherent instability of Mg in otoliths as an effect of growth (Javor 
& Dorval, 2016), therefore, it was chosen to exclude the Mg:Ca ratio 
in the RF. The RF model results demonstrated that the element:Ca 
ratios were useful for discriminating age-0 T. thynnus to the three 
nurseries with a total classification success of 60.3%. The confusion 
matrix showed that RF model and data from western, central, and 
eastern Mediterranean agree on 75%, 61%, and 45% cases, respec-
tively (Figure 3a). The backwards selection identified Mn:Ca, Sr:Ca 
and Zn:Ca as the relevant element ratios for discriminating age-0 T. 
thynnus from the three regions (Figure 3b).

4  | DISCUSSION

Trace elements ratios in the otoliths of age-0 T. thynnus varied among 
the three regional nurseries, and the observed classification success 
to the three regions was moderate (60%), suggesting that several of 
the elements assayed could be informative markers for retrospec-
tively establishing the nursery origin of this species. Several of the 

F I G U R E  3   Random Forest results: (a) Confusion matrix showing the classification results, where numbers in the square are indicative of 
the percentage agreement between observed groups (x-axis) and predicted groups (y-axis) (b) Barplot of mean decrease accuracy of analyzed 
parameters. The variables above the dotted line are those identified by the backwards selection procedure
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element:Ca ratios examined were distinct among the regions, and 
particularly, Mn:Ca, Sr:Ca and Zn:Ca ratios contributed most to vari-
ation between groups.

Several element:Ca ratios (Mg:Ca, Mn:Ca, Sr:Ca and Ba:Ca) in the 
otoliths of age-0 T. thynnus from the western Mediterranean were 
lower than the two other regions. The western area of the basin is 
considered an oceanographic transition zone where waters from 
the Mediterranean Sea mix with oceanic waters from the north-
east Atlantic Ocean (García Lafuente et al., 1995; Pinot et al., 2002). 
Oceanic waters are typically lower in trace element concentra-
tion than marginal seas because of their proximity to continental 
sources of metals brought to the sea as fluvial or atmospheric in-
puts (Desboeufs et al., 2005). Therefore, the lower concentration 
of most elements could be related to the inflowing North Atlantic 
waters that plays an important role in the seawater chemistry of 
the western Mediterranean Sea (Elbaz-Poulichet et al., 2001; Riso 
et al., 2004).

We also observed conspicuous differences in otolith chem-
istry of age-0 T. thynnus in the central and western regions of the 
Mediterranean Sea. Otoliths Mn:Ca ratios were significantly higher 
for T. thynnus from the central Mediterranean region. This differ-
ence may be related in part to variation in water chemistry due to 
aeolian particulates from industrialized northwest European coun-
tries, as well as from the Sahara Desert because both are charac-
terized by relatively high Mn concentration in aeolian particulates, 
and relevant dissolution kinetics of these elements in seawater from 
the dust (Elbaz-Poulichet et al., 2001). In past investigations, Mn 
has been used as a potential indicator of natal origin of T. thynnus 
(Rooker et al., 2001, 2003). Nevertheless, mechanisms regulating 
Mn are not fully understood (Miller, 2009) and further investigations 
are needed.

Elevated Mg:Ca in the otoliths of age-0 T. thynnus distinguishes 
the eastern Mediterranean region. This element is involved in a 
number of biological processes and in stabilizing amorphous min-
eral phases during otolith biomineralization, thus is tightly regulated 
in the body (Weiner, 2008). Furthermore, the observed negative 
correlation with length suggests the role of combined effects of 
extrinsic and intrinsic factors on otolith signature. The concentra-
tion of this metal in otoliths and its correlation with environmental 
variables (e.g., seawater chemistry, temperature) or intrinsic factors 
(e.g. physiology) has been investigated by several authors with dif-
ferent results (Di Maria et al., 2010; Javor & Dorval, 2016; Mazloumi 
et al., 2017; Miller, 2011; Sarimin & Mohamed, 2014; Sturrock 
et al., 2015).

Although data on metabolic rate of specimens and water chem-
istry are not available in this work, it is quite reasonable to specu-
late that the Mg content in otoliths from the eastern Mediterranean 
could be a result of different metabolic rates, which is in turn con-
trolled by external factors (e.g., temperature and salinity). The 
eastern Mediterranean basin is known to show an average higher 
temperature than other areas (Tanhua et al., 2013), which may affect 
the chemical incorporation indirectly through its influence on fish 
metabolism or directly through kinetic effects.

Regional variation in otolith Sr:Ca was also observed for age-0 T. 
thynnus with values increasing from west to east across the three 
nurseries in the Mediterranean Sea (Figure 2). Because Sr is often 
incorporated into otoliths in direct proportion to ambient condi-
tions (Farrell & Campana, 1996; Secor & Rooker, 2000), it probably 
reflects the correlation with salinity as suggested from several au-
thors (Panfili et al., 2015; Walther & Limburg, 2012). The Levantine 
Sea (i.e., eastern nursery) is indeed the most saline portion of the 
Mediterranean Sea and it is documented that the concentration of 
Sr is often higher in marginal seas characterized by high evaporation 
or low freshwater input (Talley et al., 2011). Our finding of increased 
otolith Sr:Ca for age-0 T. thynnus from the eastern region is in ac-
cord with elevated salinity and possibly higher seawater Sr:Ca in the 
Levantine Sea.

It is widely recognized that composition of calcified structures 
in fish is influenced not only by exogenous factors (e.g., salinity) but 
also by mechanisms mediated by endogenous aspects (e.g., growth) 
(Kalish, 1991; Walther et al., 2010). To date, the extent to which 
environmental and physiological factors affect elemental uptake in 
otoliths remains partially unresolved (Tanner et al., 2016) and can 
vary among species, habitats, populations and life stages (Clarke 
et al., 2011; Walther et al., 2010). Since the relationships to otolith 
chemistry are not well established for many elements (i.e., Mg, Mn 
and Zn) further investigations are needed to provide a direct inter-
pretation of results. An understanding of factors contributing to 
chemical differences and variability in chemical signatures can be 
helpful; however, for the purpose of stock identification, recognition 
of between group differences in chemical signatures is sufficient 
(Campana et al., 2000; Elsdon et al., 2008). Thus, beyond the poten-
tial interpretation of mechanisms related to elemental uptake in oto-
liths, the results of this work allowed for a discrimination between 
groups with a moderate degree of success (RF 45%–75%)

As widely reported, this species performs large-scale feeding 
migrations during the summer months to the Bay of Biscay and sur-
rounding waters in the northeastern Atlantic Ocean (Fromentin & 
Powers, 2005), and this fishery appears to be supported almost ex-
clusively by recruits of Mediterranean Sea origin (Fraile et al., 2015). 
The relative contribution rates of the three different nurseries 
within the basin, however, are currently unknown, and our findings 
support the application of using trace element signature to better 
understand the importance of different putative nurseries or pro-
duction zones on the population dynamics of T. thynnus (Karakulak 
et al., 2004; Oray & Karakulak, 2005; Rooker et al., 2003).

Hence, the analysis of age-0 fish can be useful to define a base-
line characterization of the chemical fingerprint for a stock, and is 
quite certain that a further examination of multiple year-classes is 
important to establish the temporal stability of elemental signatures 
(Gillanders, 2002; Rooker, Secor, De Metrio, Kaufman, et al., 2008). 
Although this study is limited to otoliths of age-0 T. thynnus, the ap-
plication developed here could shed light on the relative contribu-
tion of the different Mediterranean spawning and/or nursery areas 
to different Atlantic Ocean and Mediterranean Sea fisheries, allow-
ing for better management and conservation of this species.
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