Probabilistic design of the Land Barrier on the Bolivar Peninsula

Introduction

Introduction

Overview

Objective

Probabilistic design of the Land Barrier on the Bolivar Peninsula taking the overtopping failure mechanism into account, exploring the possibilities of overtopping resilience.

Probabilistic design of the Land Barrier on the Bolivar Peninsula taking the overtopping failure mechanism into account, exploring the possibilities of overtopping resilience.

Objective

Coastal Spine

Current situation - Galveston seawall

- ation Scenario 2 seawall - Galveston seawall
 - Bolivar Roads

Scenario 3 - Galveston seawall

- Land Barrier

- **Coastal Spine**
- Galveston seawall
- Bolivar Roads
- Land Barrier

Two Scenarios

Land Barrier Height [m]

ŤUDelft

Alternatives

- Height
 - 1. Natural approach
 - (hign barrier) 2. Low design
 - Other measures
 - 3. In between

•

Alternatives

Alternatives

Resilience:

The ability to withstand loads higher than the design water levels and wave conditions while gradually some damage may occur

Coastal Spine

- Coastal spine limits the inflow sufficiently
- Other configurations were not sufficiently limiting the inflow

Land Barrier

- Low barrier is favored
 - Consequence is large overtopping discharges

Inner slope

- Other failure mechanisms start to play a role
 - Sliding of the revetment
 - Scour hole behind the structure

- It is possible, improvements can be made
- Resilience is investigated, definition not suitable for total probability of failure

Recommendations

- Flow behavior behind the Land Barrier
- Material and erosional resistance
- Resilience
 - Definition
 - Implementation

Probabilistic design of the Land Barrier on the Bolivar Peninsula Ilze Plomp – van der Sar

